mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
dc7c06bc07
Issue: When the third-party package is not installed, whenever we need to `pip install <package>` the ImportError is raised. But sometimes, the `ValueError` or `ModuleNotFoundError` is raised. It is bad for consistency. Change: replaced the `ValueError` or `ModuleNotFoundError` with `ImportError` when we raise an error with the `pip install <package>` message. Note: Ideally, we replace all `try: import... except... raise ... `with helper functions like `import_aim` or just use the existing [langchain_core.utils.utils.guard_import](https://api.python.langchain.com/en/latest/utils/langchain_core.utils.utils.guard_import.html#langchain_core.utils.utils.guard_import) But it would be much bigger refactoring. @baskaryan Please, advice on this.
285 lines
9.3 KiB
Python
285 lines
9.3 KiB
Python
import logging
|
|
from typing import Any, List, Mapping, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra
|
|
|
|
DEFAULT_MODEL_ID = "gpt2"
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class IpexLLM(LLM):
|
|
"""IpexLLM model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import IpexLLM
|
|
llm = IpexLLM.from_model_id(model_id="THUDM/chatglm-6b")
|
|
"""
|
|
|
|
model_id: str = DEFAULT_MODEL_ID
|
|
"""Model name or model path to use."""
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments passed to the model."""
|
|
model: Any #: :meta private:
|
|
"""IpexLLM model."""
|
|
tokenizer: Any #: :meta private:
|
|
"""Huggingface tokenizer model."""
|
|
streaming: bool = True
|
|
"""Whether to stream the results, token by token."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@classmethod
|
|
def from_model_id(
|
|
cls,
|
|
model_id: str,
|
|
model_kwargs: Optional[dict] = None,
|
|
*,
|
|
tokenizer_id: Optional[str] = None,
|
|
load_in_4bit: bool = True,
|
|
load_in_low_bit: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> LLM:
|
|
"""
|
|
Construct object from model_id
|
|
|
|
Args:
|
|
model_id: Path for the huggingface repo id to be downloaded or
|
|
the huggingface checkpoint folder.
|
|
tokenizer_id: Path for the huggingface repo id to be downloaded or
|
|
the huggingface checkpoint folder which contains the tokenizer.
|
|
load_in_4bit: "Whether to load model in 4bit.
|
|
Unused if `load_in_low_bit` is not None.
|
|
load_in_low_bit: Which low bit precisions to use when loading model.
|
|
Example values: 'sym_int4', 'asym_int4', 'fp4', 'nf4', 'fp8', etc.
|
|
Overrides `load_in_4bit` if specified.
|
|
model_kwargs: Keyword arguments to pass to the model and tokenizer.
|
|
kwargs: Extra arguments to pass to the model and tokenizer.
|
|
|
|
Returns:
|
|
An object of IpexLLM.
|
|
|
|
"""
|
|
|
|
return cls._load_model(
|
|
model_id=model_id,
|
|
tokenizer_id=tokenizer_id,
|
|
low_bit_model=False,
|
|
load_in_4bit=load_in_4bit,
|
|
load_in_low_bit=load_in_low_bit,
|
|
model_kwargs=model_kwargs,
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_model_id_low_bit(
|
|
cls,
|
|
model_id: str,
|
|
model_kwargs: Optional[dict] = None,
|
|
*,
|
|
tokenizer_id: Optional[str] = None,
|
|
**kwargs: Any,
|
|
) -> LLM:
|
|
"""
|
|
Construct low_bit object from model_id
|
|
|
|
Args:
|
|
|
|
model_id: Path for the ipex-llm transformers low-bit model folder.
|
|
tokenizer_id: Path for the huggingface repo id or local model folder
|
|
which contains the tokenizer.
|
|
model_kwargs: Keyword arguments to pass to the model and tokenizer.
|
|
kwargs: Extra arguments to pass to the model and tokenizer.
|
|
|
|
Returns:
|
|
An object of IpexLLM.
|
|
"""
|
|
|
|
return cls._load_model(
|
|
model_id=model_id,
|
|
tokenizer_id=tokenizer_id,
|
|
low_bit_model=True,
|
|
load_in_4bit=False, # not used for low-bit model
|
|
load_in_low_bit=None, # not used for low-bit model
|
|
model_kwargs=model_kwargs,
|
|
kwargs=kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def _load_model(
|
|
cls,
|
|
model_id: str,
|
|
tokenizer_id: Optional[str] = None,
|
|
load_in_4bit: bool = False,
|
|
load_in_low_bit: Optional[str] = None,
|
|
low_bit_model: bool = False,
|
|
model_kwargs: Optional[dict] = None,
|
|
kwargs: Optional[dict] = None,
|
|
) -> Any:
|
|
try:
|
|
from ipex_llm.transformers import (
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
)
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import ipex-llm. "
|
|
"Please install `ipex-llm` properly following installation guides: "
|
|
"https://github.com/intel-analytics/ipex-llm?tab=readme-ov-file#install-ipex-llm."
|
|
)
|
|
|
|
_model_kwargs = model_kwargs or {}
|
|
kwargs = kwargs or {}
|
|
|
|
_tokenizer_id = tokenizer_id or model_id
|
|
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(_tokenizer_id, **_model_kwargs)
|
|
except Exception:
|
|
tokenizer = LlamaTokenizer.from_pretrained(_tokenizer_id, **_model_kwargs)
|
|
|
|
# restore model_kwargs
|
|
if "trust_remote_code" in _model_kwargs:
|
|
_model_kwargs = {
|
|
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
|
}
|
|
|
|
# load model with AutoModelForCausalLM and falls back to AutoModel on failure.
|
|
load_kwargs = {
|
|
"use_cache": True,
|
|
"trust_remote_code": True,
|
|
}
|
|
|
|
if not low_bit_model:
|
|
if load_in_low_bit is not None:
|
|
load_function_name = "from_pretrained"
|
|
load_kwargs["load_in_low_bit"] = load_in_low_bit # type: ignore
|
|
else:
|
|
load_function_name = "from_pretrained"
|
|
load_kwargs["load_in_4bit"] = load_in_4bit
|
|
else:
|
|
load_function_name = "load_low_bit"
|
|
|
|
try:
|
|
# Attempt to load with AutoModelForCausalLM
|
|
model = cls._load_model_general(
|
|
AutoModelForCausalLM,
|
|
load_function_name=load_function_name,
|
|
model_id=model_id,
|
|
load_kwargs=load_kwargs,
|
|
model_kwargs=_model_kwargs,
|
|
)
|
|
except Exception:
|
|
# Fallback to AutoModel if there's an exception
|
|
model = cls._load_model_general(
|
|
AutoModel,
|
|
load_function_name=load_function_name,
|
|
model_id=model_id,
|
|
load_kwargs=load_kwargs,
|
|
model_kwargs=_model_kwargs,
|
|
)
|
|
|
|
return cls(
|
|
model_id=model_id,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
model_kwargs=_model_kwargs,
|
|
**kwargs,
|
|
)
|
|
|
|
@staticmethod
|
|
def _load_model_general(
|
|
model_class: Any,
|
|
load_function_name: str,
|
|
model_id: str,
|
|
load_kwargs: dict,
|
|
model_kwargs: dict,
|
|
) -> Any:
|
|
"""General function to attempt to load a model."""
|
|
try:
|
|
load_function = getattr(model_class, load_function_name)
|
|
return load_function(model_id, **{**load_kwargs, **model_kwargs})
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to load model using "
|
|
f"{model_class.__name__}.{load_function_name}: {e}"
|
|
)
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model_id": self.model_id,
|
|
"model_kwargs": self.model_kwargs,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "ipex-llm"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
if self.streaming:
|
|
from transformers import TextStreamer
|
|
|
|
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")
|
|
streamer = TextStreamer(
|
|
self.tokenizer, skip_prompt=True, skip_special_tokens=True
|
|
)
|
|
if stop is not None:
|
|
from transformers.generation.stopping_criteria import (
|
|
StoppingCriteriaList,
|
|
)
|
|
from transformers.tools.agents import StopSequenceCriteria
|
|
|
|
# stop generation when stop words are encountered
|
|
# TODO: stop generation when the following one is stop word
|
|
stopping_criteria = StoppingCriteriaList(
|
|
[StopSequenceCriteria(stop, self.tokenizer)]
|
|
)
|
|
else:
|
|
stopping_criteria = None
|
|
output = self.model.generate(
|
|
input_ids,
|
|
streamer=streamer,
|
|
stopping_criteria=stopping_criteria,
|
|
**kwargs,
|
|
)
|
|
text = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
|
return text
|
|
else:
|
|
input_ids = self.tokenizer.encode(prompt, return_tensors="pt")
|
|
if stop is not None:
|
|
from transformers.generation.stopping_criteria import (
|
|
StoppingCriteriaList,
|
|
)
|
|
from transformers.tools.agents import StopSequenceCriteria
|
|
|
|
stopping_criteria = StoppingCriteriaList(
|
|
[StopSequenceCriteria(stop, self.tokenizer)]
|
|
)
|
|
else:
|
|
stopping_criteria = None
|
|
output = self.model.generate(
|
|
input_ids, stopping_criteria=stopping_criteria, **kwargs
|
|
)
|
|
text = self.tokenizer.decode(output[0], skip_special_tokens=True)[
|
|
len(prompt) :
|
|
]
|
|
return text
|