mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ebc75c5ca7
Todo - [x] copy over integration tests - [x] update docs with new instructions in #15513 - [x] add linear ticket to bump core -> community, community->langchain, and core->openai deps - [ ] (optional): add `pip install langchain-openai` command to each notebook using it - [x] Update docstrings to not need `openai` install - [x] Add serialization - [x] deprecate old models Contributor steps: - [x] Add secret names to manual integrations workflow in .github/workflows/_integration_test.yml - [x] Add secrets to release workflow (for pre-release testing) in .github/workflows/_release.yml Maintainer steps (Contributors should not do these): - [x] set up pypi and test pypi projects - [x] add credential secrets to Github Actions - [ ] add package to conda-forge Functional changes to existing classes: - now relies on openai client v1 (1.6.1) via concrete dep in langchain-openai package Codebase organization - some function calling stuff moved to `langchain_core.utils.function_calling` in order to be used in both community and langchain-openai
131 lines
5.5 KiB
Python
131 lines
5.5 KiB
Python
"""Azure OpenAI embeddings wrapper."""
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
from typing import Callable, Dict, Optional, Union
|
|
|
|
import openai
|
|
from langchain_core.pydantic_v1 import Field, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_openai.embeddings.base import OpenAIEmbeddings
|
|
|
|
|
|
class AzureOpenAIEmbeddings(OpenAIEmbeddings):
|
|
"""`Azure OpenAI` Embeddings API."""
|
|
|
|
azure_endpoint: Union[str, None] = None
|
|
"""Your Azure endpoint, including the resource.
|
|
|
|
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
|
|
|
|
Example: `https://example-resource.azure.openai.com/`
|
|
"""
|
|
deployment: Optional[str] = Field(default=None, alias="azure_deployment")
|
|
"""A model deployment.
|
|
|
|
If given sets the base client URL to include `/deployments/{azure_deployment}`.
|
|
Note: this means you won't be able to use non-deployment endpoints.
|
|
"""
|
|
openai_api_key: Union[str, None] = Field(default=None, alias="api_key")
|
|
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
|
|
azure_ad_token: Union[str, None] = None
|
|
"""Your Azure Active Directory token.
|
|
|
|
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
|
|
|
|
For more:
|
|
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
|
|
""" # noqa: E501
|
|
azure_ad_token_provider: Union[Callable[[], str], None] = None
|
|
"""A function that returns an Azure Active Directory token.
|
|
|
|
Will be invoked on every request.
|
|
"""
|
|
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
|
|
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
|
|
validate_base_url: bool = True
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
# Check OPENAI_KEY for backwards compatibility.
|
|
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
|
|
# other forms of azure credentials.
|
|
values["openai_api_key"] = (
|
|
values["openai_api_key"]
|
|
or os.getenv("AZURE_OPENAI_API_KEY")
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
|
|
"OPENAI_API_BASE"
|
|
)
|
|
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
|
|
"OPENAI_API_VERSION", default="2023-05-15"
|
|
)
|
|
values["openai_api_type"] = get_from_dict_or_env(
|
|
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
|
|
)
|
|
values["openai_organization"] = (
|
|
values["openai_organization"]
|
|
or os.getenv("OPENAI_ORG_ID")
|
|
or os.getenv("OPENAI_ORGANIZATION")
|
|
)
|
|
values["openai_proxy"] = get_from_dict_or_env(
|
|
values,
|
|
"openai_proxy",
|
|
"OPENAI_PROXY",
|
|
default="",
|
|
)
|
|
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
|
|
"AZURE_OPENAI_ENDPOINT"
|
|
)
|
|
values["azure_ad_token"] = values["azure_ad_token"] or os.getenv(
|
|
"AZURE_OPENAI_AD_TOKEN"
|
|
)
|
|
# Azure OpenAI embedding models allow a maximum of 16 texts
|
|
# at a time in each batch
|
|
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
|
|
values["chunk_size"] = min(values["chunk_size"], 16)
|
|
# For backwards compatibility. Before openai v1, no distinction was made
|
|
# between azure_endpoint and base_url (openai_api_base).
|
|
openai_api_base = values["openai_api_base"]
|
|
if openai_api_base and values["validate_base_url"]:
|
|
if "/openai" not in openai_api_base:
|
|
values["openai_api_base"] += "/openai"
|
|
raise ValueError(
|
|
"As of openai>=1.0.0, Azure endpoints should be specified via "
|
|
"the `azure_endpoint` param not `openai_api_base` "
|
|
"(or alias `base_url`). "
|
|
)
|
|
if values["deployment"]:
|
|
raise ValueError(
|
|
"As of openai>=1.0.0, if `deployment` (or alias "
|
|
"`azure_deployment`) is specified then "
|
|
"`openai_api_base` (or alias `base_url`) should not be. "
|
|
"Instead use `deployment` (or alias `azure_deployment`) "
|
|
"and `azure_endpoint`."
|
|
)
|
|
client_params = {
|
|
"api_version": values["openai_api_version"],
|
|
"azure_endpoint": values["azure_endpoint"],
|
|
"azure_deployment": values["deployment"],
|
|
"api_key": values["openai_api_key"],
|
|
"azure_ad_token": values["azure_ad_token"],
|
|
"azure_ad_token_provider": values["azure_ad_token_provider"],
|
|
"organization": values["openai_organization"],
|
|
"base_url": values["openai_api_base"],
|
|
"timeout": values["request_timeout"],
|
|
"max_retries": values["max_retries"],
|
|
"default_headers": values["default_headers"],
|
|
"default_query": values["default_query"],
|
|
"http_client": values["http_client"],
|
|
}
|
|
values["client"] = openai.AzureOpenAI(**client_params).embeddings
|
|
values["async_client"] = openai.AsyncAzureOpenAI(**client_params).embeddings
|
|
return values
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "azure-openai-chat"
|