mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
78 lines
2.5 KiB
Python
78 lines
2.5 KiB
Python
"""Different methods for rendering Tools to be passed to LLMs.
|
|
|
|
Depending on the LLM you are using and the prompting strategy you are using,
|
|
you may want Tools to be rendered in a different way.
|
|
This module contains various ways to render tools.
|
|
"""
|
|
from typing import List
|
|
|
|
from langchain_core.tools import BaseTool
|
|
|
|
from langchain_community.utils.openai_functions import (
|
|
FunctionDescription,
|
|
ToolDescription,
|
|
convert_pydantic_to_openai_function,
|
|
)
|
|
|
|
|
|
def render_text_description(tools: List[BaseTool]) -> str:
|
|
"""Render the tool name and description in plain text.
|
|
|
|
Output will be in the format of:
|
|
|
|
.. code-block:: markdown
|
|
|
|
search: This tool is used for search
|
|
calculator: This tool is used for math
|
|
"""
|
|
return "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
|
|
|
|
|
|
def render_text_description_and_args(tools: List[BaseTool]) -> str:
|
|
"""Render the tool name, description, and args in plain text.
|
|
|
|
Output will be in the format of:
|
|
|
|
.. code-block:: markdown
|
|
|
|
search: This tool is used for search, args: {"query": {"type": "string"}}
|
|
calculator: This tool is used for math, \
|
|
args: {"expression": {"type": "string"}}
|
|
"""
|
|
tool_strings = []
|
|
for tool in tools:
|
|
args_schema = str(tool.args)
|
|
tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}")
|
|
return "\n".join(tool_strings)
|
|
|
|
|
|
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
|
|
"""Format tool into the OpenAI function API."""
|
|
if tool.args_schema:
|
|
return convert_pydantic_to_openai_function(
|
|
tool.args_schema, name=tool.name, description=tool.description
|
|
)
|
|
else:
|
|
return {
|
|
"name": tool.name,
|
|
"description": tool.description,
|
|
"parameters": {
|
|
# This is a hack to get around the fact that some tools
|
|
# do not expose an args_schema, and expect an argument
|
|
# which is a string.
|
|
# And Open AI does not support an array type for the
|
|
# parameters.
|
|
"properties": {
|
|
"__arg1": {"title": "__arg1", "type": "string"},
|
|
},
|
|
"required": ["__arg1"],
|
|
"type": "object",
|
|
},
|
|
}
|
|
|
|
|
|
def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription:
|
|
"""Format tool into the OpenAI function API."""
|
|
function = format_tool_to_openai_function(tool)
|
|
return {"type": "function", "function": function}
|