mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
54f90fc6bc
- **Issue:** This is a PR about #16340 <!-- Thank you for contributing to LangChain! Please title your PR "<package>: <description>", where <package> is whichever of langchain, community, core, experimental, etc. is being modified. Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes if applicable, - **Dependencies:** any dependencies required for this change, - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` from the root of the package you've modified to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. --> Co-authored-by: yuhei.tsunoda <yuhei.tsunoda@brainpad.co.jp> |
||
---|---|---|
.. | ||
langchain_google_vertexai | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-google-vertexai
This package contains the LangChain integrations for Google Cloud generative models.
Installation
pip install -U langchain-google-vertexai
Chat Models
ChatVertexAI
class exposes models .
To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")
You can use other models, e.g. chat-bison
:
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")
Multimodal inputs
Gemini vision model supports image inputs when providing a single chat message. Example:
from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
content=[
{
"type": "text",
"text": "What's in this image?",
}, # You can optionally provide text parts
{"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
]
)
llm.invoke([message])
The value of image_url
can be any of the following:
- A public image URL
- An accessible gcs file (e.g., "gcs://path/to/file.png")
- A local file path
- A base64 encoded image (e.g.,

)
Embeddings
You can use Google Cloud's embeddings models as:
from langchain_google_vertexai import VertexAIEmbeddings
embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")
LLMs
You can use Google Cloud's generative AI models as Langchain LLMs:
from langchain.prompts import PromptTemplate
from langchain_google_vertexai import VertexAI
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
chain = prompt | llm
question = "Who was the president in the year Justin Beiber was born?"
print(chain.invoke({"question": question}))
You can use Gemini and Palm models, including code-generations ones:
from langchain_google_vertexai import VertexAI
llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)
question = "Write a python function that checks if a string is a valid email address"
output = llm(question)