mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
04c458a270
Improve the integration tests for Pinecone by adding an `.env.example` file for local testing. Additionally, add some dev dependencies specifically for integration tests. This change also helps me understand how Pinecone deals with certain things, see related issues https://github.com/hwchase17/langchain/issues/2484 https://github.com/hwchase17/langchain/issues/2816
209 lines
7.3 KiB
Python
209 lines
7.3 KiB
Python
import importlib
|
|
import os
|
|
import uuid
|
|
from typing import List
|
|
|
|
import pinecone
|
|
import pytest
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from langchain.vectorstores.pinecone import Pinecone
|
|
|
|
index_name = "langchain-test-index" # name of the index
|
|
namespace_name = "langchain-test-namespace" # name of the namespace
|
|
dimension = 1536 # dimension of the embeddings
|
|
|
|
|
|
def reset_pinecone() -> None:
|
|
assert os.environ.get("PINECONE_API_KEY") is not None
|
|
assert os.environ.get("PINECONE_ENVIRONMENT") is not None
|
|
|
|
import pinecone
|
|
|
|
importlib.reload(pinecone)
|
|
|
|
pinecone.init(
|
|
api_key=os.environ.get("PINECONE_API_KEY"),
|
|
environment=os.environ.get("PINECONE_ENVIRONMENT"),
|
|
)
|
|
|
|
|
|
class TestPinecone:
|
|
index: pinecone.Index
|
|
|
|
@classmethod
|
|
def setup_class(cls) -> None:
|
|
reset_pinecone()
|
|
|
|
cls.index = pinecone.Index(index_name)
|
|
|
|
if index_name in pinecone.list_indexes():
|
|
index_stats = cls.index.describe_index_stats()
|
|
if index_stats["dimension"] == dimension:
|
|
# delete all the vectors in the index if the dimension is the same
|
|
# from all namespaces
|
|
index_stats = cls.index.describe_index_stats()
|
|
for _namespace_name in index_stats["namespaces"].keys():
|
|
cls.index.delete(delete_all=True, namespace=_namespace_name)
|
|
|
|
else:
|
|
pinecone.delete_index(index_name)
|
|
pinecone.create_index(name=index_name, dimension=dimension)
|
|
else:
|
|
pinecone.create_index(name=index_name, dimension=dimension)
|
|
|
|
# insure the index is empty
|
|
index_stats = cls.index.describe_index_stats()
|
|
assert index_stats["dimension"] == dimension
|
|
if index_stats["namespaces"].get(namespace_name) is not None:
|
|
assert index_stats["namespaces"][namespace_name]["vector_count"] == 0
|
|
|
|
@classmethod
|
|
def teardown_class(cls) -> None:
|
|
index_stats = cls.index.describe_index_stats()
|
|
for _namespace_name in index_stats["namespaces"].keys():
|
|
cls.index.delete(delete_all=True, namespace=_namespace_name)
|
|
|
|
reset_pinecone()
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def setup(self) -> None:
|
|
# delete all the vectors in the index
|
|
index_stats = self.index.describe_index_stats()
|
|
for _namespace_name in index_stats["namespaces"].keys():
|
|
self.index.delete(delete_all=True, namespace=_namespace_name)
|
|
|
|
reset_pinecone()
|
|
|
|
@pytest.mark.vcr()
|
|
def test_from_texts(
|
|
self, texts: List[str], embedding_openai: OpenAIEmbeddings
|
|
) -> None:
|
|
"""Test end to end construction and search."""
|
|
unique_id = uuid.uuid4().hex
|
|
needs = f"foobuu {unique_id} booo"
|
|
texts.insert(0, needs)
|
|
|
|
docsearch = Pinecone.from_texts(
|
|
texts=texts,
|
|
embedding=embedding_openai,
|
|
index_name=index_name,
|
|
namespace=namespace_name,
|
|
)
|
|
output = docsearch.similarity_search(unique_id, k=1, namespace=namespace_name)
|
|
assert output == [Document(page_content=needs)]
|
|
|
|
@pytest.mark.vcr()
|
|
def test_from_texts_with_metadatas(
|
|
self, texts: List[str], embedding_openai: OpenAIEmbeddings
|
|
) -> None:
|
|
"""Test end to end construction and search."""
|
|
|
|
unique_id = uuid.uuid4().hex
|
|
needs = f"foobuu {unique_id} booo"
|
|
texts.insert(0, needs)
|
|
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = Pinecone.from_texts(
|
|
texts,
|
|
embedding_openai,
|
|
index_name=index_name,
|
|
metadatas=metadatas,
|
|
namespace=namespace_name,
|
|
)
|
|
output = docsearch.similarity_search(needs, k=1, namespace=namespace_name)
|
|
|
|
# TODO: why metadata={"page": 0.0}) instead of {"page": 0}?
|
|
assert output == [Document(page_content=needs, metadata={"page": 0.0})]
|
|
|
|
@pytest.mark.vcr()
|
|
def test_from_texts_with_scores(self, embedding_openai: OpenAIEmbeddings) -> None:
|
|
"""Test end to end construction and search with scores and IDs."""
|
|
texts = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts))]
|
|
docsearch = Pinecone.from_texts(
|
|
texts,
|
|
embedding_openai,
|
|
index_name=index_name,
|
|
metadatas=metadatas,
|
|
namespace=namespace_name,
|
|
)
|
|
output = docsearch.similarity_search_with_score(
|
|
"foo", k=3, namespace=namespace_name
|
|
)
|
|
docs = [o[0] for o in output]
|
|
scores = [o[1] for o in output]
|
|
sorted_documents = sorted(docs, key=lambda x: x.metadata["page"])
|
|
|
|
# TODO: why metadata={"page": 0.0}) instead of {"page": 0}, etc???
|
|
assert sorted_documents == [
|
|
Document(page_content="foo", metadata={"page": 0.0}),
|
|
Document(page_content="bar", metadata={"page": 1.0}),
|
|
Document(page_content="baz", metadata={"page": 2.0}),
|
|
]
|
|
assert scores[0] > scores[1] > scores[2]
|
|
|
|
def test_from_existing_index_with_namespaces(
|
|
self, embedding_openai: OpenAIEmbeddings
|
|
) -> None:
|
|
"""Test that namespaces are properly handled."""
|
|
# Create two indexes with the same name but different namespaces
|
|
texts_1 = ["foo", "bar", "baz"]
|
|
metadatas = [{"page": i} for i in range(len(texts_1))]
|
|
Pinecone.from_texts(
|
|
texts_1,
|
|
embedding_openai,
|
|
index_name=index_name,
|
|
metadatas=metadatas,
|
|
namespace=f"{index_name}-1",
|
|
)
|
|
|
|
texts_2 = ["foo2", "bar2", "baz2"]
|
|
metadatas = [{"page": i} for i in range(len(texts_2))]
|
|
|
|
Pinecone.from_texts(
|
|
texts_2,
|
|
embedding_openai,
|
|
index_name=index_name,
|
|
metadatas=metadatas,
|
|
namespace=f"{index_name}-2",
|
|
)
|
|
|
|
# Search with namespace
|
|
docsearch = Pinecone.from_existing_index(
|
|
index_name=index_name,
|
|
embedding=embedding_openai,
|
|
namespace=f"{index_name}-1",
|
|
)
|
|
output = docsearch.similarity_search("foo", k=20, namespace=f"{index_name}-1")
|
|
# check that we don't get results from the other namespace
|
|
page_contents = sorted(set([o.page_content for o in output]))
|
|
assert all(content in ["foo", "bar", "baz"] for content in page_contents)
|
|
assert all(content not in ["foo2", "bar2", "baz2"] for content in page_contents)
|
|
|
|
def test_add_documents_with_ids(
|
|
self, texts: List[str], embedding_openai: OpenAIEmbeddings
|
|
) -> None:
|
|
ids = [uuid.uuid4().hex for _ in range(len(texts))]
|
|
Pinecone.from_texts(
|
|
texts=texts,
|
|
ids=ids,
|
|
embedding=embedding_openai,
|
|
index_name=index_name,
|
|
namespace=index_name,
|
|
)
|
|
index_stats = self.index.describe_index_stats()
|
|
assert index_stats["namespaces"][index_name]["vector_count"] == len(texts)
|
|
|
|
ids_1 = [uuid.uuid4().hex for _ in range(len(texts))]
|
|
Pinecone.from_texts(
|
|
texts=texts,
|
|
ids=ids_1,
|
|
embedding=embedding_openai,
|
|
index_name=index_name,
|
|
namespace=index_name,
|
|
)
|
|
index_stats = self.index.describe_index_stats()
|
|
assert index_stats["namespaces"][index_name]["vector_count"] == len(texts) * 2
|