langchain/docs/extras/modules/chains/additional/graph_qa.ipynb
Davis Chase 87e502c6bc
Doc refactor (#6300)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-16 11:52:56 -07:00

305 lines
7.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "a6850189",
"metadata": {},
"source": [
"# Graph QA\n",
"\n",
"This notebook goes over how to do question answering over a graph data structure."
]
},
{
"cell_type": "markdown",
"id": "9e516e3e",
"metadata": {},
"source": [
"## Create the graph\n",
"\n",
"In this section, we construct an example graph. At the moment, this works best for small pieces of text."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3849873d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import GraphIndexCreator\n",
"from langchain.llms import OpenAI\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "05d65c87",
"metadata": {},
"outputs": [],
"source": [
"index_creator = GraphIndexCreator(llm=OpenAI(temperature=0))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0a45a5b9",
"metadata": {},
"outputs": [],
"source": [
"with open(\"../../state_of_the_union.txt\") as f:\n",
" all_text = f.read()"
]
},
{
"cell_type": "markdown",
"id": "3fca3e1b",
"metadata": {},
"source": [
"We will use just a small snippet, because extracting the knowledge triplets is a bit intensive at the moment."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "80522bd6",
"metadata": {},
"outputs": [],
"source": [
"text = \"\\n\".join(all_text.split(\"\\n\\n\")[105:108])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "da5aad5a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'It wont look like much, but if you stop and look closely, youll see a “Field of dreams,” the ground on which Americas future will be built. \\nThis is where Intel, the American company that helped build Silicon Valley, is going to build its $20 billion semiconductor “mega site”. \\nUp to eight state-of-the-art factories in one place. 10,000 new good-paying jobs. '"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"text"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8dad7b59",
"metadata": {},
"outputs": [],
"source": [
"graph = index_creator.from_text(text)"
]
},
{
"cell_type": "markdown",
"id": "2118f363",
"metadata": {},
"source": [
"We can inspect the created graph."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "32878c13",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('Intel', '$20 billion semiconductor \"mega site\"', 'is going to build'),\n",
" ('Intel', 'state-of-the-art factories', 'is building'),\n",
" ('Intel', '10,000 new good-paying jobs', 'is creating'),\n",
" ('Intel', 'Silicon Valley', 'is helping build'),\n",
" ('Field of dreams',\n",
" \"America's future will be built\",\n",
" 'is the ground on which')]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graph.get_triples()"
]
},
{
"cell_type": "markdown",
"id": "e9737be1",
"metadata": {},
"source": [
"## Querying the graph\n",
"We can now use the graph QA chain to ask question of the graph"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "76edc854",
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import GraphQAChain"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8e7719b4",
"metadata": {},
"outputs": [],
"source": [
"chain = GraphQAChain.from_llm(OpenAI(temperature=0), graph=graph, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "f6511169",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new GraphQAChain chain...\u001b[0m\n",
"Entities Extracted:\n",
"\u001b[32;1m\u001b[1;3m Intel\u001b[0m\n",
"Full Context:\n",
"\u001b[32;1m\u001b[1;3mIntel is going to build $20 billion semiconductor \"mega site\"\n",
"Intel is building state-of-the-art factories\n",
"Intel is creating 10,000 new good-paying jobs\n",
"Intel is helping build Silicon Valley\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' Intel is going to build a $20 billion semiconductor \"mega site\" with state-of-the-art factories, creating 10,000 new good-paying jobs and helping to build Silicon Valley.'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.run(\"what is Intel going to build?\")"
]
},
{
"cell_type": "markdown",
"id": "410aafa0",
"metadata": {},
"source": [
"## Save the graph\n",
"We can also save and load the graph."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "bc72cca0",
"metadata": {},
"outputs": [],
"source": [
"graph.write_to_gml(\"graph.gml\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "652760ad",
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes.graph import NetworkxEntityGraph"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "eae591fe",
"metadata": {},
"outputs": [],
"source": [
"loaded_graph = NetworkxEntityGraph.from_gml(\"graph.gml\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "9439d419",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('Intel', '$20 billion semiconductor \"mega site\"', 'is going to build'),\n",
" ('Intel', 'state-of-the-art factories', 'is building'),\n",
" ('Intel', '10,000 new good-paying jobs', 'is creating'),\n",
" ('Intel', 'Silicon Valley', 'is helping build'),\n",
" ('Field of dreams',\n",
" \"America's future will be built\",\n",
" 'is the ground on which')]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loaded_graph.get_triples()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "045796cf",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}