mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
160 lines
3.5 KiB
Plaintext
160 lines
3.5 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ab66dd43",
|
|
"metadata": {},
|
|
"source": [
|
|
"# TF-IDF\n",
|
|
"\n",
|
|
">[TF-IDF](https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting) means term-frequency times inverse document-frequency.\n",
|
|
"\n",
|
|
"This notebook goes over how to use a retriever that under the hood uses [TF-IDF](https://en.wikipedia.org/wiki/Tf%E2%80%93idf) using `scikit-learn` package.\n",
|
|
"\n",
|
|
"For more information on the details of TF-IDF see [this blog post](https://medium.com/data-science-bootcamp/tf-idf-basics-of-information-retrieval-48de122b2a4c)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "a801b57c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# !pip install scikit-learn"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "393ac030",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.retrievers import TFIDFRetriever"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aaf80e7f",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create New Retriever with Texts"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "98b1c017",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever = TFIDFRetriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c016b266",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create a New Retriever with Documents\n",
|
|
"\n",
|
|
"You can now create a new retriever with the documents you created."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "53af4f00",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.schema import Document\n",
|
|
"\n",
|
|
"retriever = TFIDFRetriever.from_documents(\n",
|
|
" [\n",
|
|
" Document(page_content=\"foo\"),\n",
|
|
" Document(page_content=\"bar\"),\n",
|
|
" Document(page_content=\"world\"),\n",
|
|
" Document(page_content=\"hello\"),\n",
|
|
" Document(page_content=\"foo bar\"),\n",
|
|
" ]\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "08437fa2",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Use Retriever\n",
|
|
"\n",
|
|
"We can now use the retriever!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "c0455218",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"result = retriever.get_relevant_documents(\"foo\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "7dfa5c29",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='foo', metadata={}),\n",
|
|
" Document(page_content='foo bar', metadata={}),\n",
|
|
" Document(page_content='hello', metadata={}),\n",
|
|
" Document(page_content='world', metadata={})]"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"result"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|