langchain/libs/experimental/tests/unit_tests/test_reversible_data_anonymizer.py
maks-operlejn-ds 4cc4534d81
Data deanonymization (#10093)
### Description

The feature for pseudonymizing data with ability to retrieve original
text (deanonymization) has been implemented. In order to protect private
data, such as when querying external APIs (OpenAI), it is worth
pseudonymizing sensitive data to maintain full privacy. But then, after
the model response, it would be good to have the data in the original
form.

I implemented the `PresidioReversibleAnonymizer`, which consists of two
parts:

1. anonymization - it works the same way as `PresidioAnonymizer`, plus
the object itself stores a mapping of made-up values to original ones,
for example:
```
    {
        "PERSON": {
            "<anonymized>": "<original>",
            "John Doe": "Slim Shady"
        },
        "PHONE_NUMBER": {
            "111-111-1111": "555-555-5555"
        }
        ...
    }
```

2. deanonymization - using the mapping described above, it matches fake
data with original data and then substitutes it.

Between anonymization and deanonymization user can perform different
operations, for example, passing the output to LLM.

### Future works

- **instance anonymization** - at this point, each occurrence of PII is
treated as a separate entity and separately anonymized. Therefore, two
occurrences of the name John Doe in the text will be changed to two
different names. It is therefore worth introducing support for full
instance detection, so that repeated occurrences are treated as a single
object.
- **better matching and substitution of fake values for real ones** -
currently the strategy is based on matching full strings and then
substituting them. Due to the indeterminism of language models, it may
happen that the value in the answer is slightly changed (e.g. *John Doe*
-> *John* or *Main St, New York* -> *New York*) and such a substitution
is then no longer possible. Therefore, it is worth adjusting the
matching for your needs.
- **Q&A with anonymization** - when I'm done writing all the
functionality, I thought it would be a cool resource in documentation to
write a notebook about retrieval from documents using anonymization. An
iterative process, adding new recognizers to fit the data, lessons
learned and what to look out for

### Twitter handle
@deepsense_ai / @MaksOpp

---------

Co-authored-by: MaksOpp <maks.operlejn@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-06 21:33:24 -07:00

155 lines
5.8 KiB
Python

import os
from typing import Iterator, List
import pytest
@pytest.fixture(scope="module", autouse=True)
def check_spacy_model() -> Iterator[None]:
import spacy
if not spacy.util.is_package("en_core_web_lg"):
pytest.skip(reason="Spacy model 'en_core_web_lg' not installed")
yield
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
@pytest.mark.parametrize(
"analyzed_fields,should_contain",
[(["PERSON"], False), (["PHONE_NUMBER"], True), (None, False)],
)
def test_anonymize(analyzed_fields: List[str], should_contain: bool) -> None:
"""Test anonymizing a name in a simple sentence"""
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
text = "Hello, my name is John Doe."
anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields)
anonymized_text = anonymizer.anonymize(text)
assert ("John Doe" in anonymized_text) == should_contain
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_anonymize_multiple() -> None:
"""Test anonymizing multiple items in a sentence"""
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
text = "John Smith's phone number is 313-666-7440 and email is johnsmith@gmail.com"
anonymizer = PresidioReversibleAnonymizer()
anonymized_text = anonymizer.anonymize(text)
for phrase in ["John Smith", "313-666-7440", "johnsmith@gmail.com"]:
assert phrase not in anonymized_text
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_anonymize_with_custom_operator() -> None:
"""Test anonymize a name with a custom operator"""
from presidio_anonymizer.entities import OperatorConfig
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
custom_operator = {"PERSON": OperatorConfig("replace", {"new_value": "<name>"})}
anonymizer = PresidioReversibleAnonymizer(operators=custom_operator)
text = "Jane Doe was here."
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "<name> was here."
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_add_recognizer_operator() -> None:
"""
Test add recognizer and anonymize a new type of entity and with a custom operator
"""
from presidio_analyzer import PatternRecognizer
from presidio_anonymizer.entities import OperatorConfig
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[])
titles_list = ["Sir", "Madam", "Professor"]
custom_recognizer = PatternRecognizer(
supported_entity="TITLE", deny_list=titles_list
)
anonymizer.add_recognizer(custom_recognizer)
# anonymizing with custom recognizer
text = "Madam Jane Doe was here."
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "<TITLE> Jane Doe was here."
# anonymizing with custom recognizer and operator
custom_operator = {"TITLE": OperatorConfig("replace", {"new_value": "Dear"})}
anonymizer.add_operators(custom_operator)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "Dear Jane Doe was here."
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_deanonymizer_mapping() -> None:
"""Test if deanonymizer mapping is correctly populated"""
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
anonymizer = PresidioReversibleAnonymizer(
analyzed_fields=["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"]
)
anonymizer.anonymize("Hello, my name is John Doe and my number is 444 555 6666.")
# ["PERSON", "PHONE_NUMBER"]
assert len(anonymizer.deanonymizer_mapping.keys()) == 2
assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values()
assert (
"444 555 6666"
in anonymizer.deanonymizer_mapping.get("PHONE_NUMBER", {}).values()
)
text_to_anonymize = (
"And my name is Jane Doe, my email is jane@gmail.com and "
"my credit card is 4929 5319 6292 5362."
)
anonymizer.anonymize(text_to_anonymize)
# ["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"]
assert len(anonymizer.deanonymizer_mapping.keys()) == 4
assert "Jane Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values()
assert (
"jane@gmail.com"
in anonymizer.deanonymizer_mapping.get("EMAIL_ADDRESS", {}).values()
)
assert (
"4929 5319 6292 5362"
in anonymizer.deanonymizer_mapping.get("CREDIT_CARD", {}).values()
)
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_deanonymize() -> None:
"""Test deanonymizing a name in a simple sentence"""
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
text = "Hello, my name is John Doe."
anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"])
anonymized_text = anonymizer.anonymize(text)
deanonymized_text = anonymizer.deanonymize(anonymized_text)
assert deanonymized_text == text
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_save_load_deanonymizer_mapping() -> None:
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"])
anonymizer.anonymize("Hello, my name is John Doe.")
try:
anonymizer.save_deanonymizer_mapping("test_file.json")
assert os.path.isfile("test_file.json")
anonymizer = PresidioReversibleAnonymizer()
anonymizer.load_deanonymizer_mapping("test_file.json")
assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values()
finally:
os.remove("test_file.json")