mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
9c8523b529
@eyurtsev
73 lines
3.7 KiB
Python
73 lines
3.7 KiB
Python
"""**Retriever** class returns Documents given a text **query**.
|
|
|
|
It is more general than a vector store. A retriever does not need to be able to
|
|
store documents, only to return (or retrieve) it. Vector stores can be used as
|
|
the backbone of a retriever, but there are other types of retrievers as well.
|
|
|
|
**Class hierarchy:**
|
|
|
|
.. code-block::
|
|
|
|
BaseRetriever --> <name>Retriever # Examples: ArxivRetriever, MergerRetriever
|
|
|
|
**Main helpers:**
|
|
|
|
.. code-block::
|
|
|
|
Document, Serializable, Callbacks,
|
|
CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun
|
|
"""
|
|
|
|
import importlib
|
|
from typing import Any
|
|
|
|
_module_lookup = {
|
|
"AmazonKendraRetriever": "langchain_community.retrievers.kendra",
|
|
"AmazonKnowledgeBasesRetriever": "langchain_community.retrievers.bedrock",
|
|
"ArceeRetriever": "langchain_community.retrievers.arcee",
|
|
"ArxivRetriever": "langchain_community.retrievers.arxiv",
|
|
"AzureCognitiveSearchRetriever": "langchain_community.retrievers.azure_cognitive_search", # noqa: E501
|
|
"BM25Retriever": "langchain_community.retrievers.bm25",
|
|
"BreebsRetriever": "langchain_community.retrievers.breebs",
|
|
"ChaindeskRetriever": "langchain_community.retrievers.chaindesk",
|
|
"ChatGPTPluginRetriever": "langchain_community.retrievers.chatgpt_plugin_retriever",
|
|
"CohereRagRetriever": "langchain_community.retrievers.cohere_rag_retriever",
|
|
"DocArrayRetriever": "langchain_community.retrievers.docarray",
|
|
"ElasticSearchBM25Retriever": "langchain_community.retrievers.elastic_search_bm25",
|
|
"EmbedchainRetriever": "langchain_community.retrievers.embedchain",
|
|
"GoogleCloudEnterpriseSearchRetriever": "langchain_community.retrievers.google_vertex_ai_search", # noqa: E501
|
|
"GoogleDocumentAIWarehouseRetriever": "langchain_community.retrievers.google_cloud_documentai_warehouse", # noqa: E501
|
|
"GoogleVertexAIMultiTurnSearchRetriever": "langchain_community.retrievers.google_vertex_ai_search", # noqa: E501
|
|
"GoogleVertexAISearchRetriever": "langchain_community.retrievers.google_vertex_ai_search", # noqa: E501
|
|
"KNNRetriever": "langchain_community.retrievers.knn",
|
|
"KayAiRetriever": "langchain_community.retrievers.kay",
|
|
"LlamaIndexGraphRetriever": "langchain_community.retrievers.llama_index",
|
|
"LlamaIndexRetriever": "langchain_community.retrievers.llama_index",
|
|
"MetalRetriever": "langchain_community.retrievers.metal",
|
|
"MilvusRetriever": "langchain_community.retrievers.milvus",
|
|
"OutlineRetriever": "langchain_community.retrievers.outline",
|
|
"PineconeHybridSearchRetriever": "langchain_community.retrievers.pinecone_hybrid_search", # noqa: E501
|
|
"PubMedRetriever": "langchain_community.retrievers.pubmed",
|
|
"QdrantSparseVectorRetriever": "langchain_community.retrievers.qdrant_sparse_vector_retriever", # noqa: E501
|
|
"RemoteLangChainRetriever": "langchain_community.retrievers.remote_retriever",
|
|
"SVMRetriever": "langchain_community.retrievers.svm",
|
|
"TFIDFRetriever": "langchain_community.retrievers.tfidf",
|
|
"TavilySearchAPIRetriever": "langchain_community.retrievers.tavily_search_api",
|
|
"VespaRetriever": "langchain_community.retrievers.vespa_retriever",
|
|
"WeaviateHybridSearchRetriever": "langchain_community.retrievers.weaviate_hybrid_search", # noqa: E501
|
|
"WikipediaRetriever": "langchain_community.retrievers.wikipedia",
|
|
"YouRetriever": "langchain_community.retrievers.you",
|
|
"ZepRetriever": "langchain_community.retrievers.zep",
|
|
"ZillizRetriever": "langchain_community.retrievers.zilliz",
|
|
}
|
|
|
|
|
|
def __getattr__(name: str) -> Any:
|
|
if name in _module_lookup:
|
|
module = importlib.import_module(_module_lookup[name])
|
|
return getattr(module, name)
|
|
raise AttributeError(f"module {__name__} has no attribute {name}")
|
|
|
|
|
|
__all__ = list(_module_lookup.keys())
|