langchain/libs/community/langchain_community/retrievers/__init__.py
2024-03-12 15:18:54 -07:00

73 lines
3.7 KiB
Python

"""**Retriever** class returns Documents given a text **query**.
It is more general than a vector store. A retriever does not need to be able to
store documents, only to return (or retrieve) it. Vector stores can be used as
the backbone of a retriever, but there are other types of retrievers as well.
**Class hierarchy:**
.. code-block::
BaseRetriever --> <name>Retriever # Examples: ArxivRetriever, MergerRetriever
**Main helpers:**
.. code-block::
Document, Serializable, Callbacks,
CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun
"""
import importlib
from typing import Any
_module_lookup = {
"AmazonKendraRetriever": "langchain_community.retrievers.kendra",
"AmazonKnowledgeBasesRetriever": "langchain_community.retrievers.bedrock",
"ArceeRetriever": "langchain_community.retrievers.arcee",
"ArxivRetriever": "langchain_community.retrievers.arxiv",
"AzureCognitiveSearchRetriever": "langchain_community.retrievers.azure_cognitive_search", # noqa: E501
"BM25Retriever": "langchain_community.retrievers.bm25",
"BreebsRetriever": "langchain_community.retrievers.breebs",
"ChaindeskRetriever": "langchain_community.retrievers.chaindesk",
"ChatGPTPluginRetriever": "langchain_community.retrievers.chatgpt_plugin_retriever",
"CohereRagRetriever": "langchain_community.retrievers.cohere_rag_retriever",
"DocArrayRetriever": "langchain_community.retrievers.docarray",
"ElasticSearchBM25Retriever": "langchain_community.retrievers.elastic_search_bm25",
"EmbedchainRetriever": "langchain_community.retrievers.embedchain",
"GoogleCloudEnterpriseSearchRetriever": "langchain_community.retrievers.google_vertex_ai_search", # noqa: E501
"GoogleDocumentAIWarehouseRetriever": "langchain_community.retrievers.google_cloud_documentai_warehouse", # noqa: E501
"GoogleVertexAIMultiTurnSearchRetriever": "langchain_community.retrievers.google_vertex_ai_search", # noqa: E501
"GoogleVertexAISearchRetriever": "langchain_community.retrievers.google_vertex_ai_search", # noqa: E501
"KNNRetriever": "langchain_community.retrievers.knn",
"KayAiRetriever": "langchain_community.retrievers.kay",
"LlamaIndexGraphRetriever": "langchain_community.retrievers.llama_index",
"LlamaIndexRetriever": "langchain_community.retrievers.llama_index",
"MetalRetriever": "langchain_community.retrievers.metal",
"MilvusRetriever": "langchain_community.retrievers.milvus",
"OutlineRetriever": "langchain_community.retrievers.outline",
"PineconeHybridSearchRetriever": "langchain_community.retrievers.pinecone_hybrid_search", # noqa: E501
"PubMedRetriever": "langchain_community.retrievers.pubmed",
"QdrantSparseVectorRetriever": "langchain_community.retrievers.qdrant_sparse_vector_retriever", # noqa: E501
"RemoteLangChainRetriever": "langchain_community.retrievers.remote_retriever",
"SVMRetriever": "langchain_community.retrievers.svm",
"TFIDFRetriever": "langchain_community.retrievers.tfidf",
"TavilySearchAPIRetriever": "langchain_community.retrievers.tavily_search_api",
"VespaRetriever": "langchain_community.retrievers.vespa_retriever",
"WeaviateHybridSearchRetriever": "langchain_community.retrievers.weaviate_hybrid_search", # noqa: E501
"WikipediaRetriever": "langchain_community.retrievers.wikipedia",
"YouRetriever": "langchain_community.retrievers.you",
"ZepRetriever": "langchain_community.retrievers.zep",
"ZillizRetriever": "langchain_community.retrievers.zilliz",
}
def __getattr__(name: str) -> Any:
if name in _module_lookup:
module = importlib.import_module(_module_lookup[name])
return getattr(module, name)
raise AttributeError(f"module {__name__} has no attribute {name}")
__all__ = list(_module_lookup.keys())