mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
66e45e8ab7
Related to #17048
309 lines
11 KiB
Python
309 lines
11 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import Any, Callable, Dict, List, Optional, Sequence
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.load.serializable import Serializable
|
|
from langchain_core.pydantic_v1 import SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
from tenacity import (
|
|
before_sleep_log,
|
|
retry,
|
|
retry_if_exception_type,
|
|
stop_after_attempt,
|
|
wait_exponential,
|
|
)
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class _BaseYandexGPT(Serializable):
|
|
iam_token: SecretStr = "" # type: ignore[assignment]
|
|
"""Yandex Cloud IAM token for service or user account
|
|
with the `ai.languageModels.user` role"""
|
|
api_key: SecretStr = "" # type: ignore[assignment]
|
|
"""Yandex Cloud Api Key for service account
|
|
with the `ai.languageModels.user` role"""
|
|
folder_id: str = ""
|
|
"""Yandex Cloud folder ID"""
|
|
model_uri: str = ""
|
|
"""Model uri to use."""
|
|
model_name: str = "yandexgpt-lite"
|
|
"""Model name to use."""
|
|
model_version: str = "latest"
|
|
"""Model version to use."""
|
|
temperature: float = 0.6
|
|
"""What sampling temperature to use.
|
|
Should be a double number between 0 (inclusive) and 1 (inclusive)."""
|
|
max_tokens: int = 7400
|
|
"""Sets the maximum limit on the total number of tokens
|
|
used for both the input prompt and the generated response.
|
|
Must be greater than zero and not exceed 7400 tokens."""
|
|
stop: Optional[List[str]] = None
|
|
"""Sequences when completion generation will stop."""
|
|
url: str = "llm.api.cloud.yandex.net:443"
|
|
"""The url of the API."""
|
|
max_retries: int = 6
|
|
"""Maximum number of retries to make when generating."""
|
|
sleep_interval: float = 1.0
|
|
"""Delay between API requests"""
|
|
_grpc_metadata: Sequence
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "yandex_gpt"
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model_uri": self.model_uri,
|
|
"temperature": self.temperature,
|
|
"max_tokens": self.max_tokens,
|
|
"stop": self.stop,
|
|
"max_retries": self.max_retries,
|
|
}
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that iam token exists in environment."""
|
|
|
|
iam_token = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "iam_token", "YC_IAM_TOKEN", "")
|
|
)
|
|
values["iam_token"] = iam_token
|
|
api_key = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "api_key", "YC_API_KEY", "")
|
|
)
|
|
values["api_key"] = api_key
|
|
folder_id = get_from_dict_or_env(values, "folder_id", "YC_FOLDER_ID", "")
|
|
values["folder_id"] = folder_id
|
|
if api_key.get_secret_value() == "" and iam_token.get_secret_value() == "":
|
|
raise ValueError("Either 'YC_API_KEY' or 'YC_IAM_TOKEN' must be provided.")
|
|
|
|
if values["iam_token"]:
|
|
values["_grpc_metadata"] = [
|
|
("authorization", f"Bearer {values['iam_token'].get_secret_value()}")
|
|
]
|
|
if values["folder_id"]:
|
|
values["_grpc_metadata"].append(("x-folder-id", values["folder_id"]))
|
|
else:
|
|
values["_grpc_metadata"] = (
|
|
("authorization", f"Api-Key {values['api_key'].get_secret_value()}"),
|
|
)
|
|
if values["model_uri"] == "" and values["folder_id"] == "":
|
|
raise ValueError("Either 'model_uri' or 'folder_id' must be provided.")
|
|
if not values["model_uri"]:
|
|
values[
|
|
"model_uri"
|
|
] = f"gpt://{values['folder_id']}/{values['model_name']}/{values['model_version']}"
|
|
return values
|
|
|
|
|
|
class YandexGPT(_BaseYandexGPT, LLM):
|
|
"""Yandex large language models.
|
|
|
|
To use, you should have the ``yandexcloud`` python package installed.
|
|
|
|
There are two authentication options for the service account
|
|
with the ``ai.languageModels.user`` role:
|
|
- You can specify the token in a constructor parameter `iam_token`
|
|
or in an environment variable `YC_IAM_TOKEN`.
|
|
- You can specify the key in a constructor parameter `api_key`
|
|
or in an environment variable `YC_API_KEY`.
|
|
|
|
To use the default model specify the folder ID in a parameter `folder_id`
|
|
or in an environment variable `YC_FOLDER_ID`.
|
|
|
|
Or specify the model URI in a constructor parameter `model_uri`
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import YandexGPT
|
|
yandex_gpt = YandexGPT(iam_token="t1.9eu...", folder_id="b1g...")
|
|
"""
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call the Yandex GPT model and return the output.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = YandexGPT("Tell me a joke.")
|
|
"""
|
|
text = completion_with_retry(self, prompt=prompt)
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|
|
|
|
async def _acall(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Async call the Yandex GPT model and return the output.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
"""
|
|
text = await acompletion_with_retry(self, prompt=prompt)
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|
|
|
|
|
|
def _make_request(
|
|
self: YandexGPT,
|
|
prompt: str,
|
|
) -> str:
|
|
try:
|
|
import grpc
|
|
from google.protobuf.wrappers_pb2 import DoubleValue, Int64Value
|
|
from yandex.cloud.ai.foundation_models.v1.foundation_models_pb2 import (
|
|
CompletionOptions,
|
|
Message,
|
|
)
|
|
from yandex.cloud.ai.foundation_models.v1.foundation_models_service_pb2 import ( # noqa: E501
|
|
CompletionRequest,
|
|
)
|
|
from yandex.cloud.ai.foundation_models.v1.foundation_models_service_pb2_grpc import ( # noqa: E501
|
|
TextGenerationServiceStub,
|
|
)
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Please install YandexCloud SDK with `pip install yandexcloud` \
|
|
or upgrade it to recent version."
|
|
) from e
|
|
channel_credentials = grpc.ssl_channel_credentials()
|
|
channel = grpc.secure_channel(self.url, channel_credentials)
|
|
request = CompletionRequest(
|
|
model_uri=self.model_uri,
|
|
completion_options=CompletionOptions(
|
|
temperature=DoubleValue(value=self.temperature),
|
|
max_tokens=Int64Value(value=self.max_tokens),
|
|
),
|
|
messages=[Message(role="user", text=prompt)],
|
|
)
|
|
stub = TextGenerationServiceStub(channel)
|
|
res = stub.Completion(request, metadata=self._grpc_metadata) # type: ignore[attr-defined]
|
|
return list(res)[0].alternatives[0].message.text
|
|
|
|
|
|
async def _amake_request(self: YandexGPT, prompt: str) -> str:
|
|
try:
|
|
import asyncio
|
|
|
|
import grpc
|
|
from google.protobuf.wrappers_pb2 import DoubleValue, Int64Value
|
|
from yandex.cloud.ai.foundation_models.v1.foundation_models_pb2 import (
|
|
CompletionOptions,
|
|
Message,
|
|
)
|
|
from yandex.cloud.ai.foundation_models.v1.foundation_models_service_pb2 import ( # noqa: E501
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
)
|
|
from yandex.cloud.ai.foundation_models.v1.foundation_models_service_pb2_grpc import ( # noqa: E501
|
|
TextGenerationAsyncServiceStub,
|
|
)
|
|
from yandex.cloud.operation.operation_service_pb2 import GetOperationRequest
|
|
from yandex.cloud.operation.operation_service_pb2_grpc import (
|
|
OperationServiceStub,
|
|
)
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"Please install YandexCloud SDK with `pip install yandexcloud` \
|
|
or upgrade it to recent version."
|
|
) from e
|
|
operation_api_url = "operation.api.cloud.yandex.net:443"
|
|
channel_credentials = grpc.ssl_channel_credentials()
|
|
async with grpc.aio.secure_channel(self.url, channel_credentials) as channel:
|
|
request = CompletionRequest(
|
|
model_uri=self.model_uri,
|
|
completion_options=CompletionOptions(
|
|
temperature=DoubleValue(value=self.temperature),
|
|
max_tokens=Int64Value(value=self.max_tokens),
|
|
),
|
|
messages=[Message(role="user", text=prompt)],
|
|
)
|
|
stub = TextGenerationAsyncServiceStub(channel)
|
|
operation = await stub.Completion(request, metadata=self._grpc_metadata) # type: ignore[attr-defined]
|
|
async with grpc.aio.secure_channel(
|
|
operation_api_url, channel_credentials
|
|
) as operation_channel:
|
|
operation_stub = OperationServiceStub(operation_channel)
|
|
while not operation.done:
|
|
await asyncio.sleep(1)
|
|
operation_request = GetOperationRequest(operation_id=operation.id)
|
|
operation = await operation_stub.Get(
|
|
operation_request,
|
|
metadata=self._grpc_metadata, # type: ignore[attr-defined]
|
|
)
|
|
|
|
completion_response = CompletionResponse()
|
|
operation.response.Unpack(completion_response)
|
|
return completion_response.alternatives[0].message.text
|
|
|
|
|
|
def _create_retry_decorator(llm: YandexGPT) -> Callable[[Any], Any]:
|
|
from grpc import RpcError
|
|
|
|
min_seconds = llm.sleep_interval
|
|
max_seconds = 60
|
|
return retry(
|
|
reraise=True,
|
|
stop=stop_after_attempt(llm.max_retries),
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
retry=(retry_if_exception_type((RpcError))),
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
)
|
|
|
|
|
|
def completion_with_retry(llm: YandexGPT, **kwargs: Any) -> Any:
|
|
"""Use tenacity to retry the completion call."""
|
|
retry_decorator = _create_retry_decorator(llm)
|
|
|
|
@retry_decorator
|
|
def _completion_with_retry(**_kwargs: Any) -> Any:
|
|
return _make_request(llm, **_kwargs)
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
|
|
async def acompletion_with_retry(llm: YandexGPT, **kwargs: Any) -> Any:
|
|
"""Use tenacity to retry the async completion call."""
|
|
retry_decorator = _create_retry_decorator(llm)
|
|
|
|
@retry_decorator
|
|
async def _completion_with_retry(**_kwargs: Any) -> Any:
|
|
return await _amake_request(llm, **_kwargs)
|
|
|
|
return await _completion_with_retry(**kwargs)
|