langchain/libs/community/langchain_community/llms/watsonxllm.py
Mateusz Szewczyk 916332ef5b
ibm: added partners package langchain_ibm, added llm (#16512)
- **Description:** Added `langchain_ibm` as an langchain partners
package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM
provider (`WatsonxLLM`)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
  - **Tag maintainer:** : 
---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-14 12:12:19 -08:00

405 lines
15 KiB
Python

import logging
import os
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
logger = logging.getLogger(__name__)
@deprecated(
since="0.0.18", removal="0.2", alternative_import="langchain_ibm.WatsonxLLM"
)
class WatsonxLLM(BaseLLM):
"""
IBM watsonx.ai large language models.
To use, you should have ``ibm_watsonx_ai`` python package installed,
and the environment variable ``WATSONX_APIKEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames
parameters = {
GenTextParamsMetaNames.DECODING_METHOD: "sample",
GenTextParamsMetaNames.MAX_NEW_TOKENS: 100,
GenTextParamsMetaNames.MIN_NEW_TOKENS: 1,
GenTextParamsMetaNames.TEMPERATURE: 0.5,
GenTextParamsMetaNames.TOP_K: 50,
GenTextParamsMetaNames.TOP_P: 1,
}
from langchain_community.llms import WatsonxLLM
watsonx_llm = WatsonxLLM(
model_id="google/flan-ul2",
url="https://us-south.ml.cloud.ibm.com",
apikey="*****",
project_id="*****",
params=parameters,
)
"""
model_id: str = ""
"""Type of model to use."""
deployment_id: str = ""
"""Type of deployed model to use."""
project_id: str = ""
"""ID of the Watson Studio project."""
space_id: str = ""
"""ID of the Watson Studio space."""
url: Optional[SecretStr] = None
"""Url to Watson Machine Learning instance"""
apikey: Optional[SecretStr] = None
"""Apikey to Watson Machine Learning instance"""
token: Optional[SecretStr] = None
"""Token to Watson Machine Learning instance"""
password: Optional[SecretStr] = None
"""Password to Watson Machine Learning instance"""
username: Optional[SecretStr] = None
"""Username to Watson Machine Learning instance"""
instance_id: Optional[SecretStr] = None
"""Instance_id of Watson Machine Learning instance"""
version: Optional[SecretStr] = None
"""Version of Watson Machine Learning instance"""
params: Optional[dict] = None
"""Model parameters to use during generate requests."""
verify: Union[str, bool] = ""
"""User can pass as verify one of following:
the path to a CA_BUNDLE file
the path of directory with certificates of trusted CAs
True - default path to truststore will be taken
False - no verification will be made"""
streaming: bool = False
""" Whether to stream the results or not. """
watsonx_model: Any
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@classmethod
def is_lc_serializable(cls) -> bool:
return False
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"url": "WATSONX_URL",
"apikey": "WATSONX_APIKEY",
"token": "WATSONX_TOKEN",
"password": "WATSONX_PASSWORD",
"username": "WATSONX_USERNAME",
"instance_id": "WATSONX_INSTANCE_ID",
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that credentials and python package exists in environment."""
values["url"] = convert_to_secret_str(
get_from_dict_or_env(values, "url", "WATSONX_URL")
)
if "cloud.ibm.com" in values.get("url", "").get_secret_value():
values["apikey"] = convert_to_secret_str(
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
)
else:
if (
not values["token"]
and "WATSONX_TOKEN" not in os.environ
and not values["password"]
and "WATSONX_PASSWORD" not in os.environ
and not values["apikey"]
and "WATSONX_APIKEY" not in os.environ
):
raise ValueError(
"Did not find 'token', 'password' or 'apikey',"
" please add an environment variable"
" `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' "
"which contains it,"
" or pass 'token', 'password' or 'apikey'"
" as a named parameter."
)
elif values["token"] or "WATSONX_TOKEN" in os.environ:
values["token"] = convert_to_secret_str(
get_from_dict_or_env(values, "token", "WATSONX_TOKEN")
)
elif values["password"] or "WATSONX_PASSWORD" in os.environ:
values["password"] = convert_to_secret_str(
get_from_dict_or_env(values, "password", "WATSONX_PASSWORD")
)
values["username"] = convert_to_secret_str(
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
)
elif values["apikey"] or "WATSONX_APIKEY" in os.environ:
values["apikey"] = convert_to_secret_str(
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
)
values["username"] = convert_to_secret_str(
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
)
if not values["instance_id"] or "WATSONX_INSTANCE_ID" not in os.environ:
values["instance_id"] = convert_to_secret_str(
get_from_dict_or_env(values, "instance_id", "WATSONX_INSTANCE_ID")
)
try:
from ibm_watsonx_ai.foundation_models import ModelInference
credentials = {
"url": values["url"].get_secret_value() if values["url"] else None,
"apikey": (
values["apikey"].get_secret_value() if values["apikey"] else None
),
"token": (
values["token"].get_secret_value() if values["token"] else None
),
"password": (
values["password"].get_secret_value()
if values["password"]
else None
),
"username": (
values["username"].get_secret_value()
if values["username"]
else None
),
"instance_id": (
values["instance_id"].get_secret_value()
if values["instance_id"]
else None
),
"version": (
values["version"].get_secret_value() if values["version"] else None
),
}
credentials_without_none_value = {
key: value for key, value in credentials.items() if value is not None
}
watsonx_model = ModelInference(
model_id=values["model_id"],
deployment_id=values["deployment_id"],
credentials=credentials_without_none_value,
params=values["params"],
project_id=values["project_id"],
space_id=values["space_id"],
verify=values["verify"],
)
values["watsonx_model"] = watsonx_model
except ImportError:
raise ImportError(
"Could not import ibm_watsonx_ai python package. "
"Please install it with `pip install ibm_watsonx_ai`."
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"deployment_id": self.deployment_id,
"params": self.params,
"project_id": self.project_id,
"space_id": self.space_id,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "IBM watsonx.ai"
@staticmethod
def _extract_token_usage(
response: Optional[List[Dict[str, Any]]] = None,
) -> Dict[str, Any]:
if response is None:
return {"generated_token_count": 0, "input_token_count": 0}
input_token_count = 0
generated_token_count = 0
def get_count_value(key: str, result: Dict[str, Any]) -> int:
return result.get(key, 0) or 0
for res in response:
results = res.get("results")
if results:
input_token_count += get_count_value("input_token_count", results[0])
generated_token_count += get_count_value(
"generated_token_count", results[0]
)
return {
"generated_token_count": generated_token_count,
"input_token_count": input_token_count,
}
def _get_chat_params(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
params: Dict[str, Any] = {**self.params} if self.params else {}
if stop is not None:
params["stop_sequences"] = stop
return params
def _create_llm_result(self, response: List[dict]) -> LLMResult:
"""Create the LLMResult from the choices and prompts."""
generations = []
for res in response:
results = res.get("results")
if results:
finish_reason = results[0].get("stop_reason")
gen = Generation(
text=results[0].get("generated_text"),
generation_info={"finish_reason": finish_reason},
)
generations.append([gen])
final_token_usage = self._extract_token_usage(response)
llm_output = {
"token_usage": final_token_usage,
"model_id": self.model_id,
"deployment_id": self.deployment_id,
}
return LLMResult(generations=generations, llm_output=llm_output)
def _stream_response_to_generation_chunk(
self,
stream_response: Dict[str, Any],
) -> GenerationChunk:
"""Convert a stream response to a generation chunk."""
if not stream_response["results"]:
return GenerationChunk(text="")
return GenerationChunk(
text=stream_response["results"][0]["generated_text"],
generation_info=dict(
finish_reason=stream_response["results"][0].get("stop_reason", None),
llm_output={
"model_id": self.model_id,
"deployment_id": self.deployment_id,
},
),
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call the IBM watsonx.ai inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager: Optional callback manager.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = watsonx_llm("What is a molecule")
"""
result = self._generate(
prompts=[prompt], stop=stop, run_manager=run_manager, **kwargs
)
return result.generations[0][0].text
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
"""Call the IBM watsonx.ai inference endpoint which then generate the response.
Args:
prompts: List of strings (prompts) to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager: Optional callback manager.
Returns:
The full LLMResult output.
Example:
.. code-block:: python
response = watsonx_llm.generate(["What is a molecule"])
"""
params = self._get_chat_params(stop=stop)
should_stream = stream if stream is not None else self.streaming
if should_stream:
if len(prompts) > 1:
raise ValueError(
f"WatsonxLLM currently only supports single prompt, got {prompts}"
)
generation = GenerationChunk(text="")
stream_iter = self._stream(
prompts[0], stop=stop, run_manager=run_manager, **kwargs
)
for chunk in stream_iter:
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
if isinstance(generation.generation_info, dict):
llm_output = generation.generation_info.pop("llm_output")
return LLMResult(generations=[[generation]], llm_output=llm_output)
return LLMResult(generations=[[generation]])
else:
response = self.watsonx_model.generate(prompt=prompts, params=params)
return self._create_llm_result(response)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Call the IBM watsonx.ai inference endpoint which then streams the response.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager: Optional callback manager.
Returns:
The iterator which yields generation chunks.
Example:
.. code-block:: python
response = watsonx_llm.stream("What is a molecule")
for chunk in response:
print(chunk, end='') # noqa: T201
"""
params = self._get_chat_params(stop=stop)
for stream_resp in self.watsonx_model.generate_text_stream(
prompt=prompt, raw_response=True, params=params
):
chunk = self._stream_response_to_generation_chunk(stream_resp)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk