langchain/libs/community/langchain_community/llms/sparkllm.py
Guangdong Liu ced5e7bae7
community[patch]: Fix sparkllm authentication problem. (#18651)
- **Description:** fix sparkllm authentication problem.The current
timestamp is in RFC1123 format. The time deviation must be controlled
within 300s. I changed to re-obtain the url every time I ask a question.
https://www.xfyun.cn/doc/spark/general_url_authentication.html#_1-2-%E9%89%B4%E6%9D%83%E5%8F%82%E6%95%B0
2024-03-06 18:43:16 -08:00

385 lines
12 KiB
Python

from __future__ import annotations
import base64
import hashlib
import hmac
import json
import logging
import queue
import threading
from datetime import datetime
from queue import Queue
from time import mktime
from typing import Any, Dict, Generator, Iterator, List, Optional
from urllib.parse import urlencode, urlparse, urlunparse
from wsgiref.handlers import format_date_time
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class SparkLLM(LLM):
"""Wrapper around iFlyTek's Spark large language model.
To use, you should pass `app_id`, `api_key`, `api_secret`
as a named parameter to the constructor OR set environment
variables ``IFLYTEK_SPARK_APP_ID``, ``IFLYTEK_SPARK_API_KEY`` and
``IFLYTEK_SPARK_API_SECRET``
Example:
.. code-block:: python
client = SparkLLM(
spark_app_id="<app_id>",
spark_api_key="<api_key>",
spark_api_secret="<api_secret>"
)
"""
client: Any = None #: :meta private:
spark_app_id: Optional[str] = None
spark_api_key: Optional[str] = None
spark_api_secret: Optional[str] = None
spark_api_url: Optional[str] = None
spark_llm_domain: Optional[str] = None
spark_user_id: str = "lc_user"
streaming: bool = False
request_timeout: int = 30
temperature: float = 0.5
top_k: int = 4
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["spark_app_id"] = get_from_dict_or_env(
values,
"spark_app_id",
"IFLYTEK_SPARK_APP_ID",
)
values["spark_api_key"] = get_from_dict_or_env(
values,
"spark_api_key",
"IFLYTEK_SPARK_API_KEY",
)
values["spark_api_secret"] = get_from_dict_or_env(
values,
"spark_api_secret",
"IFLYTEK_SPARK_API_SECRET",
)
values["spark_api_url"] = get_from_dict_or_env(
values,
"spark_api_url",
"IFLYTEK_SPARK_API_URL",
"wss://spark-api.xf-yun.com/v3.1/chat",
)
values["spark_llm_domain"] = get_from_dict_or_env(
values,
"spark_llm_domain",
"IFLYTEK_SPARK_LLM_DOMAIN",
"generalv3",
)
# put extra params into model_kwargs
values["model_kwargs"]["temperature"] = values["temperature"] or cls.temperature
values["model_kwargs"]["top_k"] = values["top_k"] or cls.top_k
values["client"] = _SparkLLMClient(
app_id=values["spark_app_id"],
api_key=values["spark_api_key"],
api_secret=values["spark_api_secret"],
api_url=values["spark_api_url"],
spark_domain=values["spark_llm_domain"],
model_kwargs=values["model_kwargs"],
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "spark-llm-chat"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling SparkLLM API."""
normal_params = {
"spark_llm_domain": self.spark_llm_domain,
"stream": self.streaming,
"request_timeout": self.request_timeout,
"top_k": self.top_k,
"temperature": self.temperature,
}
return {**normal_params, **self.model_kwargs}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to an sparkllm for each generation with a prompt.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The string generated by the llm.
Example:
.. code-block:: python
response = client("Tell me a joke.")
"""
if self.streaming:
completion = ""
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
completion += chunk.text
return completion
completion = ""
self.client.arun(
[{"role": "user", "content": prompt}],
self.spark_user_id,
self.model_kwargs,
self.streaming,
)
for content in self.client.subscribe(timeout=self.request_timeout):
if "data" not in content:
continue
completion = content["data"]["content"]
return completion
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
self.client.run(
[{"role": "user", "content": prompt}],
self.spark_user_id,
self.model_kwargs,
self.streaming,
)
for content in self.client.subscribe(timeout=self.request_timeout):
if "data" not in content:
continue
delta = content["data"]
yield GenerationChunk(text=delta["content"])
if run_manager:
run_manager.on_llm_new_token(delta)
class _SparkLLMClient:
"""
Use websocket-client to call the SparkLLM interface provided by Xfyun,
which is the iFlyTek's open platform for AI capabilities
"""
def __init__(
self,
app_id: str,
api_key: str,
api_secret: str,
api_url: Optional[str] = None,
spark_domain: Optional[str] = None,
model_kwargs: Optional[dict] = None,
):
try:
import websocket
self.websocket_client = websocket
except ImportError:
raise ImportError(
"Could not import websocket client python package. "
"Please install it with `pip install websocket-client`."
)
self.api_url = (
"wss://spark-api.xf-yun.com/v3.1/chat" if not api_url else api_url
)
self.app_id = app_id
self.model_kwargs = model_kwargs
self.spark_domain = spark_domain or "generalv3"
self.queue: Queue[Dict] = Queue()
self.blocking_message = {"content": "", "role": "assistant"}
self.api_key = api_key
self.api_secret = api_secret
@staticmethod
def _create_url(api_url: str, api_key: str, api_secret: str) -> str:
"""
Generate a request url with an api key and an api secret.
"""
# generate timestamp by RFC1123
date = format_date_time(mktime(datetime.now().timetuple()))
# urlparse
parsed_url = urlparse(api_url)
host = parsed_url.netloc
path = parsed_url.path
signature_origin = f"host: {host}\ndate: {date}\nGET {path} HTTP/1.1"
# encrypt using hmac-sha256
signature_sha = hmac.new(
api_secret.encode("utf-8"),
signature_origin.encode("utf-8"),
digestmod=hashlib.sha256,
).digest()
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding="utf-8")
authorization_origin = f'api_key="{api_key}", algorithm="hmac-sha256", \
headers="host date request-line", signature="{signature_sha_base64}"'
authorization = base64.b64encode(authorization_origin.encode("utf-8")).decode(
encoding="utf-8"
)
# generate url
params_dict = {"authorization": authorization, "date": date, "host": host}
encoded_params = urlencode(params_dict)
url = urlunparse(
(
parsed_url.scheme,
parsed_url.netloc,
parsed_url.path,
parsed_url.params,
encoded_params,
parsed_url.fragment,
)
)
return url
def run(
self,
messages: List[Dict],
user_id: str,
model_kwargs: Optional[dict] = None,
streaming: bool = False,
) -> None:
self.websocket_client.enableTrace(False)
ws = self.websocket_client.WebSocketApp(
_SparkLLMClient._create_url(
self.api_url,
self.api_key,
self.api_secret,
),
on_message=self.on_message,
on_error=self.on_error,
on_close=self.on_close,
on_open=self.on_open,
)
ws.messages = messages
ws.user_id = user_id
ws.model_kwargs = self.model_kwargs if model_kwargs is None else model_kwargs
ws.streaming = streaming
ws.run_forever()
def arun(
self,
messages: List[Dict],
user_id: str,
model_kwargs: Optional[dict] = None,
streaming: bool = False,
) -> threading.Thread:
ws_thread = threading.Thread(
target=self.run,
args=(
messages,
user_id,
model_kwargs,
streaming,
),
)
ws_thread.start()
return ws_thread
def on_error(self, ws: Any, error: Optional[Any]) -> None:
self.queue.put({"error": error})
ws.close()
def on_close(self, ws: Any, close_status_code: int, close_reason: str) -> None:
logger.debug(
{
"log": {
"close_status_code": close_status_code,
"close_reason": close_reason,
}
}
)
self.queue.put({"done": True})
def on_open(self, ws: Any) -> None:
self.blocking_message = {"content": "", "role": "assistant"}
data = json.dumps(
self.gen_params(
messages=ws.messages, user_id=ws.user_id, model_kwargs=ws.model_kwargs
)
)
ws.send(data)
def on_message(self, ws: Any, message: str) -> None:
data = json.loads(message)
code = data["header"]["code"]
if code != 0:
self.queue.put(
{"error": f"Code: {code}, Error: {data['header']['message']}"}
)
ws.close()
else:
choices = data["payload"]["choices"]
status = choices["status"]
content = choices["text"][0]["content"]
if ws.streaming:
self.queue.put({"data": choices["text"][0]})
else:
self.blocking_message["content"] += content
if status == 2:
if not ws.streaming:
self.queue.put({"data": self.blocking_message})
usage_data = (
data.get("payload", {}).get("usage", {}).get("text", {})
if data
else {}
)
self.queue.put({"usage": usage_data})
ws.close()
def gen_params(
self, messages: list, user_id: str, model_kwargs: Optional[dict] = None
) -> dict:
data: Dict = {
"header": {"app_id": self.app_id, "uid": user_id},
"parameter": {"chat": {"domain": self.spark_domain}},
"payload": {"message": {"text": messages}},
}
if model_kwargs:
data["parameter"]["chat"].update(model_kwargs)
logger.debug(f"Spark Request Parameters: {data}")
return data
def subscribe(self, timeout: Optional[int] = 30) -> Generator[Dict, None, None]:
while True:
try:
content = self.queue.get(timeout=timeout)
except queue.Empty as _:
raise TimeoutError(
f"SparkLLMClient wait LLM api response timeout {timeout} seconds"
)
if "error" in content:
raise ConnectionError(content["error"])
if "usage" in content:
yield content
continue
if "done" in content:
break
if "data" not in content:
break
yield content