langchain/libs/community/langchain_community/embeddings/fastembed.py
Sergey Kozlov 1a55e950aa
community[patch]: support fastembed v1 and v2 (#19125)
**Description:**
#18040 forces `fastembed>2.0`, and this causes dependency conflicts with
the new `unstructured` package (different `onnxruntime`). There may be
other dependency conflicts.. The only way to use
`langchain-community>=0.0.28` is rollback to `unstructured 0.10.X`. But
new `unstructured` contains many fixes.

This PR allows to use both `fastembed` `v1` and `v2`.

How to reproduce:

`pyproject.toml`:
```toml
[tool.poetry]
name = "depstest"
version = "0.0.0"
description = "test"
authors = ["<dev@example.org>"]

[tool.poetry.dependencies]
python = ">=3.10,<3.12"
langchain-community = "^0.0.28"
fastembed = "^0.2.0"
unstructured = {extras = ["pdf"], version = "^0.12"}
```

```bash
$ poetry lock
```

Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
2024-03-15 18:33:51 -07:00

120 lines
3.7 KiB
Python

from typing import Any, Dict, List, Literal, Optional
import numpy as np
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
class FastEmbedEmbeddings(BaseModel, Embeddings):
"""Qdrant FastEmbedding models.
FastEmbed is a lightweight, fast, Python library built for embedding generation.
See more documentation at:
* https://github.com/qdrant/fastembed/
* https://qdrant.github.io/fastembed/
To use this class, you must install the `fastembed` Python package.
`pip install fastembed`
Example:
from langchain_community.embeddings import FastEmbedEmbeddings
fastembed = FastEmbedEmbeddings()
"""
model_name: str = "BAAI/bge-small-en-v1.5"
"""Name of the FastEmbedding model to use
Defaults to "BAAI/bge-small-en-v1.5"
Find the list of supported models at
https://qdrant.github.io/fastembed/examples/Supported_Models/
"""
max_length: int = 512
"""The maximum number of tokens. Defaults to 512.
Unknown behavior for values > 512.
"""
cache_dir: Optional[str]
"""The path to the cache directory.
Defaults to `local_cache` in the parent directory
"""
threads: Optional[int]
"""The number of threads single onnxruntime session can use.
Defaults to None
"""
doc_embed_type: Literal["default", "passage"] = "default"
"""Type of embedding to use for documents
The available options are: "default" and "passage"
"""
_model: Any # : :meta private:
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that FastEmbed has been installed."""
model_name = values.get("model_name")
max_length = values.get("max_length")
cache_dir = values.get("cache_dir")
threads = values.get("threads")
try:
# >= v0.2.0
from fastembed import TextEmbedding
values["_model"] = TextEmbedding(
model_name=model_name,
max_length=max_length,
cache_dir=cache_dir,
threads=threads,
)
except ImportError as ie:
try:
# < v0.2.0
from fastembed.embedding import FlagEmbedding
values["_model"] = FlagEmbedding(
model_name=model_name,
max_length=max_length,
cache_dir=cache_dir,
threads=threads,
)
except ImportError:
raise ImportError(
"Could not import 'fastembed' Python package. "
"Please install it with `pip install fastembed`."
) from ie
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Generate embeddings for documents using FastEmbed.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings: List[np.ndarray]
if self.doc_embed_type == "passage":
embeddings = self._model.passage_embed(texts)
else:
embeddings = self._model.embed(texts)
return [e.tolist() for e in embeddings]
def embed_query(self, text: str) -> List[float]:
"""Generate query embeddings using FastEmbed.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
query_embeddings: np.ndarray = next(self._model.query_embed(text))
return query_embeddings.tolist()