mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
134 lines
4.2 KiB
Python
134 lines
4.2 KiB
Python
"""Loads .ipynb notebook files."""
|
|
import json
|
|
from pathlib import Path
|
|
from typing import Any, List
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
|
|
|
|
def concatenate_cells(
|
|
cell: dict, include_outputs: bool, max_output_length: int, traceback: bool
|
|
) -> str:
|
|
"""Combine cells information in a readable format ready to be used.
|
|
|
|
Args:
|
|
cell: A dictionary
|
|
include_outputs: Whether to include the outputs of the cell.
|
|
max_output_length: Maximum length of the output to be displayed.
|
|
traceback: Whether to return a traceback of the error.
|
|
|
|
Returns:
|
|
A string with the cell information.
|
|
|
|
"""
|
|
cell_type = cell["cell_type"]
|
|
source = cell["source"]
|
|
output = cell["outputs"]
|
|
|
|
if include_outputs and cell_type == "code" and output:
|
|
if "ename" in output[0].keys():
|
|
error_name = output[0]["ename"]
|
|
error_value = output[0]["evalue"]
|
|
if traceback:
|
|
traceback = output[0]["traceback"]
|
|
return (
|
|
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
|
|
f" with description '{error_value}'\n"
|
|
f"and traceback '{traceback}'\n\n"
|
|
)
|
|
else:
|
|
return (
|
|
f"'{cell_type}' cell: '{source}'\n, gives error '{error_name}',"
|
|
f"with description '{error_value}'\n\n"
|
|
)
|
|
elif output[0]["output_type"] == "stream":
|
|
output = output[0]["text"]
|
|
min_output = min(max_output_length, len(output))
|
|
return (
|
|
f"'{cell_type}' cell: '{source}'\n with "
|
|
f"output: '{output[:min_output]}'\n\n"
|
|
)
|
|
else:
|
|
return f"'{cell_type}' cell: '{source}'\n\n"
|
|
|
|
return ""
|
|
|
|
|
|
def remove_newlines(x: Any) -> Any:
|
|
"""Recursively remove newlines, no matter the data structure they are stored in."""
|
|
import pandas as pd
|
|
|
|
if isinstance(x, str):
|
|
return x.replace("\n", "")
|
|
elif isinstance(x, list):
|
|
return [remove_newlines(elem) for elem in x]
|
|
elif isinstance(x, pd.DataFrame):
|
|
return x.applymap(remove_newlines)
|
|
else:
|
|
return x
|
|
|
|
|
|
class NotebookLoader(BaseLoader):
|
|
"""Load `Jupyter notebook` (.ipynb) files."""
|
|
|
|
def __init__(
|
|
self,
|
|
path: str,
|
|
include_outputs: bool = False,
|
|
max_output_length: int = 10,
|
|
remove_newline: bool = False,
|
|
traceback: bool = False,
|
|
):
|
|
"""Initialize with a path.
|
|
|
|
Args:
|
|
path: The path to load the notebook from.
|
|
include_outputs: Whether to include the outputs of the cell.
|
|
Defaults to False.
|
|
max_output_length: Maximum length of the output to be displayed.
|
|
Defaults to 10.
|
|
remove_newline: Whether to remove newlines from the notebook.
|
|
Defaults to False.
|
|
traceback: Whether to return a traceback of the error.
|
|
Defaults to False.
|
|
"""
|
|
self.file_path = path
|
|
self.include_outputs = include_outputs
|
|
self.max_output_length = max_output_length
|
|
self.remove_newline = remove_newline
|
|
self.traceback = traceback
|
|
|
|
def load(
|
|
self,
|
|
) -> List[Document]:
|
|
"""Load documents."""
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise ImportError(
|
|
"pandas is needed for Notebook Loader, "
|
|
"please install with `pip install pandas`"
|
|
)
|
|
p = Path(self.file_path)
|
|
|
|
with open(p, encoding="utf8") as f:
|
|
d = json.load(f)
|
|
|
|
data = pd.json_normalize(d["cells"])
|
|
filtered_data = data[["cell_type", "source", "outputs"]]
|
|
if self.remove_newline:
|
|
filtered_data = filtered_data.applymap(remove_newlines)
|
|
|
|
text = filtered_data.apply(
|
|
lambda x: concatenate_cells(
|
|
x, self.include_outputs, self.max_output_length, self.traceback
|
|
),
|
|
axis=1,
|
|
).str.cat(sep=" ")
|
|
|
|
metadata = {"source": str(p)}
|
|
|
|
return [Document(page_content=text, metadata=metadata)]
|