langchain/libs/community/langchain_community/agent_toolkits/sql/toolkit.py
Bagatur 1dc6c1ce06
core[patch], community[patch], langchain[patch], docs: Update SQL chains/agents/docs (#16168)
Revamp SQL use cases docs. In the process update SQL chains and agents.
2024-01-22 08:19:08 -08:00

76 lines
2.9 KiB
Python

"""Toolkit for interacting with an SQL database."""
from typing import List
from langchain_core.language_models import BaseLanguageModel
from langchain_core.pydantic_v1 import Field
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.tools import BaseTool
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
class SQLDatabaseToolkit(BaseToolkit):
"""Toolkit for interacting with SQL databases."""
db: SQLDatabase = Field(exclude=True)
llm: BaseLanguageModel = Field(exclude=True)
@property
def dialect(self) -> str:
"""Return string representation of SQL dialect to use."""
return self.db.dialect
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
list_sql_database_tool = ListSQLDatabaseTool(db=self.db)
info_sql_database_tool_description = (
"Input to this tool is a comma-separated list of tables, output is the "
"schema and sample rows for those tables. "
"Be sure that the tables actually exist by calling "
f"{list_sql_database_tool.name} first! "
"Example Input: table1, table2, table3"
)
info_sql_database_tool = InfoSQLDatabaseTool(
db=self.db, description=info_sql_database_tool_description
)
query_sql_database_tool_description = (
"Input to this tool is a detailed and correct SQL query, output is a "
"result from the database. If the query is not correct, an error message "
"will be returned. If an error is returned, rewrite the query, check the "
"query, and try again. If you encounter an issue with Unknown column "
f"'xxxx' in 'field list', use {info_sql_database_tool.name} "
"to query the correct table fields."
)
query_sql_database_tool = QuerySQLDataBaseTool(
db=self.db, description=query_sql_database_tool_description
)
query_sql_checker_tool_description = (
"Use this tool to double check if your query is correct before executing "
"it. Always use this tool before executing a query with "
f"{query_sql_database_tool.name}!"
)
query_sql_checker_tool = QuerySQLCheckerTool(
db=self.db, llm=self.llm, description=query_sql_checker_tool_description
)
return [
query_sql_database_tool,
info_sql_database_tool,
list_sql_database_tool,
query_sql_checker_tool,
]
def get_context(self) -> dict:
"""Return db context that you may want in agent prompt."""
return self.db.get_context()