langchain/libs/community/langchain_community/vectorstores/surrealdb.py
Bagatur fa5d49f2c1
docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran 
```bash
g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g"
g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g"
g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g"
g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g"
g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g"
g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g"
gco master libs/langchain/tests/unit_tests/*/test_imports.py
gco master libs/langchain/tests/unit_tests/**/test_public_api.py
```
2024-01-02 16:47:11 -05:00

450 lines
14 KiB
Python

import asyncio
from typing import (
Any,
Iterable,
List,
Optional,
Tuple,
)
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
class SurrealDBStore(VectorStore):
"""
SurrealDB as Vector Store.
To use, you should have the ``surrealdb`` python package installed.
Args:
embedding_function: Embedding function to use.
dburl: SurrealDB connection url
ns: surrealdb namespace for the vector store. (default: "langchain")
db: surrealdb database for the vector store. (default: "database")
collection: surrealdb collection for the vector store.
(default: "documents")
(optional) db_user and db_pass: surrealdb credentials
Example:
.. code-block:: python
from langchain_community.vectorstores.surrealdb import SurrealDBStore
from langchain_community.embeddings import HuggingFaceEmbeddings
embedding_function = HuggingFaceEmbeddings()
dburl = "ws://localhost:8000/rpc"
ns = "langchain"
db = "docstore"
collection = "documents"
db_user = "root"
db_pass = "root"
sdb = SurrealDBStore.from_texts(
texts=texts,
embedding=embedding_function,
dburl,
ns, db, collection,
db_user=db_user, db_pass=db_pass)
"""
def __init__(
self,
embedding_function: Embeddings,
**kwargs: Any,
) -> None:
from surrealdb import Surreal
self.collection = kwargs.pop("collection", "documents")
self.ns = kwargs.pop("ns", "langchain")
self.db = kwargs.pop("db", "database")
self.dburl = kwargs.pop("dburl", "ws://localhost:8000/rpc")
self.embedding_function = embedding_function
self.sdb = Surreal(self.dburl)
self.kwargs = kwargs
async def initialize(self) -> None:
"""
Initialize connection to surrealdb database
and authenticate if credentials are provided
"""
await self.sdb.connect(self.dburl)
if "db_user" in self.kwargs and "db_pass" in self.kwargs:
user = self.kwargs.get("db_user")
password = self.kwargs.get("db_pass")
await self.sdb.signin({"user": user, "pass": password})
await self.sdb.use(self.ns, self.db)
@property
def embeddings(self) -> Optional[Embeddings]:
return (
self.embedding_function
if isinstance(self.embedding_function, Embeddings)
else None
)
async def aadd_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Add list of text along with embeddings to the vector store asynchronously
Args:
texts (Iterable[str]): collection of text to add to the database
Returns:
List of ids for the newly inserted documents
"""
embeddings = self.embedding_function.embed_documents(list(texts))
ids = []
for idx, text in enumerate(texts):
data = {"text": text, "embedding": embeddings[idx]}
if metadatas is not None and idx < len(metadatas):
data["metadata"] = metadatas[idx]
record = await self.sdb.create(
self.collection,
data,
)
ids.append(record[0]["id"])
return ids
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Add list of text along with embeddings to the vector store
Args:
texts (Iterable[str]): collection of text to add to the database
Returns:
List of ids for the newly inserted documents
"""
async def _add_texts(
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
await self.initialize()
return await self.aadd_texts(texts, metadatas, **kwargs)
return asyncio.run(_add_texts(texts, metadatas, **kwargs))
async def adelete(
self,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> Optional[bool]:
"""Delete by document ID asynchronously.
Args:
ids: List of ids to delete.
**kwargs: Other keyword arguments that subclasses might use.
Returns:
Optional[bool]: True if deletion is successful,
False otherwise.
"""
if ids is None:
await self.sdb.delete(self.collection)
return True
else:
if isinstance(ids, str):
await self.sdb.delete(ids)
return True
else:
if isinstance(ids, list) and len(ids) > 0:
_ = [await self.sdb.delete(id) for id in ids]
return True
return False
def delete(
self,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> Optional[bool]:
"""Delete by document ID.
Args:
ids: List of ids to delete.
**kwargs: Other keyword arguments that subclasses might use.
Returns:
Optional[bool]: True if deletion is successful,
False otherwise.
"""
async def _delete(ids: Optional[List[str]], **kwargs: Any) -> Optional[bool]:
await self.initialize()
return await self.adelete(ids=ids, **kwargs)
return asyncio.run(_delete(ids, **kwargs))
async def _asimilarity_search_by_vector_with_score(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Run similarity search for query embedding asynchronously
and return documents and scores
Args:
embedding (List[float]): Query embedding.
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar along with scores
"""
args = {
"collection": self.collection,
"embedding": embedding,
"k": k,
"score_threshold": kwargs.get("score_threshold", 0),
}
query = """select id, text, metadata,
vector::similarity::cosine(embedding,{embedding}) as similarity
from {collection}
where vector::similarity::cosine(embedding,{embedding}) >= {score_threshold}
order by similarity desc LIMIT {k}
""".format(**args)
results = await self.sdb.query(query)
if len(results) == 0:
return []
return [
(
Document(
page_content=result["text"],
metadata={"id": result["id"], **result["metadata"]},
),
result["similarity"],
)
for result in results[0]["result"]
]
async def asimilarity_search_with_relevance_scores(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Run similarity search asynchronously and return relevance scores
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar along with relevance scores
"""
query_embedding = self.embedding_function.embed_query(query)
return [
(document, similarity)
for document, similarity in (
await self._asimilarity_search_by_vector_with_score(
query_embedding, k, **kwargs
)
)
]
def similarity_search_with_relevance_scores(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Run similarity search synchronously and return relevance scores
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar along with relevance scores
"""
async def _similarity_search_with_relevance_scores() -> (
List[Tuple[Document, float]]
):
await self.initialize()
return await self.asimilarity_search_with_relevance_scores(
query, k, **kwargs
)
return asyncio.run(_similarity_search_with_relevance_scores())
async def asimilarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Run similarity search asynchronously and return distance scores
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar along with relevance distance scores
"""
query_embedding = self.embedding_function.embed_query(query)
return [
(document, similarity)
for document, similarity in (
await self._asimilarity_search_by_vector_with_score(
query_embedding, k, **kwargs
)
)
]
def similarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Run similarity search synchronously and return distance scores
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar along with relevance distance scores
"""
async def _similarity_search_with_score() -> List[Tuple[Document, float]]:
await self.initialize()
return await self.asimilarity_search_with_score(query, k, **kwargs)
return asyncio.run(_similarity_search_with_score())
async def asimilarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Run similarity search on query embedding asynchronously
Args:
embedding (List[float]): Query embedding
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar to the query
"""
return [
document
for document, _ in await self._asimilarity_search_by_vector_with_score(
embedding, k, **kwargs
)
]
def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Run similarity search on query embedding
Args:
embedding (List[float]): Query embedding
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar to the query
"""
async def _similarity_search_by_vector() -> List[Document]:
await self.initialize()
return await self.asimilarity_search_by_vector(embedding, k, **kwargs)
return asyncio.run(_similarity_search_by_vector())
async def asimilarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Run similarity search on query asynchronously
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar to the query
"""
query_embedding = self.embedding_function.embed_query(query)
return await self.asimilarity_search_by_vector(query_embedding, k, **kwargs)
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Run similarity search on query
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar to the query
"""
async def _similarity_search() -> List[Document]:
await self.initialize()
return await self.asimilarity_search(query, k, **kwargs)
return asyncio.run(_similarity_search())
@classmethod
async def afrom_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "SurrealDBStore":
"""Create SurrealDBStore from list of text asynchronously
Args:
texts (List[str]): list of text to vectorize and store
embedding (Optional[Embeddings]): Embedding function.
dburl (str): SurrealDB connection url
(default: "ws://localhost:8000/rpc")
ns (str): surrealdb namespace for the vector store.
(default: "langchain")
db (str): surrealdb database for the vector store.
(default: "database")
collection (str): surrealdb collection for the vector store.
(default: "documents")
(optional) db_user and db_pass: surrealdb credentials
Returns:
SurrealDBStore object initialized and ready for use."""
sdb = cls(embedding, **kwargs)
await sdb.initialize()
await sdb.aadd_texts(texts, metadatas, **kwargs)
return sdb
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "SurrealDBStore":
"""Create SurrealDBStore from list of text
Args:
texts (List[str]): list of text to vectorize and store
embedding (Optional[Embeddings]): Embedding function.
dburl (str): SurrealDB connection url
ns (str): surrealdb namespace for the vector store.
(default: "langchain")
db (str): surrealdb database for the vector store.
(default: "database")
collection (str): surrealdb collection for the vector store.
(default: "documents")
(optional) db_user and db_pass: surrealdb credentials
Returns:
SurrealDBStore object initialized and ready for use."""
sdb = asyncio.run(cls.afrom_texts(texts, embedding, metadatas, **kwargs))
return sdb