langchain/docs/modules/indexes/vectorstores/examples/clickhouse.ipynb
Hao Chen a4c9053d40
Integrate Clickhouse as Vector Store (#5650)
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.

Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.

After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.

Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->

#### Description

This PR is mainly to integrate open source version of ClickHouse as
Vector Store as it is easy for both local development and adoption of
LangChain for enterprises who already have large scale clickhouse
deployment.

ClickHouse is a open source real-time OLAP database with full SQL
support and a wide range of functions to assist users in writing
analytical queries. Some of these functions and data structures perform
distance operations between vectors, [enabling ClickHouse to be used as
a vector
database](https://clickhouse.com/blog/vector-search-clickhouse-p1).
Recently added ClickHouse capabilities like [Approximate Nearest
Neighbour (ANN)
indices](https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/annindexes)
support faster approximate matching of vectors and provide a promising
development aimed to further enhance the vector matching capabilities of
ClickHouse.

In LangChain, some ClickHouse based commercial variant vector stores
like
[Chroma](https://github.com/hwchase17/langchain/blob/master/langchain/vectorstores/chroma.py)
and
[MyScale](https://github.com/hwchase17/langchain/blob/master/langchain/vectorstores/myscale.py),
etc are already integrated, but for some enterprises with large scale
Clickhouse clusters deployment, it will be more straightforward to
upgrade existing clickhouse infra instead of moving to another similar
vector store solution, so we believe it's a valid requirement to
integrate open source version of ClickHouse as vector store.

As `clickhouse-connect` is already included by other integrations, this
PR won't include any new dependencies.

#### Before submitting

<!-- If you're adding a new integration, please include:

1. Added a test for the integration:
https://github.com/haoch/langchain/blob/clickhouse/tests/integration_tests/vectorstores/test_clickhouse.py
2. Added an example notebook and document showing its use: 
* Notebook:
https://github.com/haoch/langchain/blob/clickhouse/docs/modules/indexes/vectorstores/examples/clickhouse.ipynb
* Doc:
https://github.com/haoch/langchain/blob/clickhouse/docs/integrations/clickhouse.md

See contribution guidelines for more information on how to write tests,
lint
etc:


https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->

1. Added a test for the integration:
https://github.com/haoch/langchain/blob/clickhouse/tests/integration_tests/vectorstores/test_clickhouse.py
2. Added an example notebook and document showing its use: 
* Notebook:
https://github.com/haoch/langchain/blob/clickhouse/docs/modules/indexes/vectorstores/examples/clickhouse.ipynb
* Doc:
https://github.com/haoch/langchain/blob/clickhouse/docs/integrations/clickhouse.md


#### Who can review?

Tag maintainers/contributors who might be interested:

<!-- For a quicker response, figure out the right person to tag with @

  @hwchase17 - project lead

  Tracing / Callbacks
  - @agola11

  Async
  - @agola11

  DataLoaders
  - @eyurtsev

  Models
  - @hwchase17
  - @agola11

  Agents / Tools / Toolkits
  - @vowelparrot

  VectorStores / Retrievers / Memory
  - @dev2049

 -->
 
@hwchase17 @dev2049 Could you please help review?

---------

Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-05 13:32:04 -07:00

400 lines
12 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# ClickHouse Vector Search\n",
"\n",
"> [ClickHouse](https://clickhouse.com/) is the fastest and most resource efficient open-source database for real-time apps and analytics with full SQL support and a wide range of functions to assist users in writing analytical queries. Lately added data structures and distance search functions (like `L2Distance`) as well as [approximate nearest neighbor search indexes](https://clickhouse.com/docs/en/engines/table-engines/mergetree-family/annindexes) enable ClickHouse to be used as a high performance and scalable vector database to store and search vectors with SQL.\n",
"\n",
"This notebook shows how to use functionality related to the `ClickHouse` vector search."
]
},
{
"cell_type": "markdown",
"id": "43ead5d5-2c1f-4dce-a69a-cb00e4f9d6f0",
"metadata": {},
"source": [
"## Setting up envrionments"
]
},
{
"cell_type": "markdown",
"id": "b2c434bc",
"metadata": {},
"source": [
"Setting up local clickhouse server with docker (optional)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "249a7751",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:43:43.035606Z",
"start_time": "2023-06-03T08:43:42.618531Z"
}
},
"outputs": [],
"source": [
"! docker run -d -p 8123:8123 -p9000:9000 --name langchain-clickhouse-server --ulimit nofile=262144:262144 clickhouse/clickhouse-server:23.4.2.11"
]
},
{
"cell_type": "markdown",
"id": "7bd3c1c0",
"metadata": {},
"source": [
"Setup up clickhouse client driver"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9d614bf8",
"metadata": {},
"outputs": [],
"source": [
"!pip install clickhouse-connect"
]
},
{
"cell_type": "markdown",
"id": "15a1d477-9cdb-4d82-b019-96951ecb2b72",
"metadata": {},
"source": [
"We want to use OpenAIEmbeddings so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "91003ea5-0c8c-436c-a5de-aaeaeef2f458",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:49:35.383673Z",
"start_time": "2023-06-03T08:49:33.984547Z"
}
},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"if not os.environ['OPENAI_API_KEY']:\n",
" os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "aac9563e",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:33:31.554934Z",
"start_time": "2023-06-03T08:33:31.549590Z"
},
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Clickhouse, ClickhouseSettings"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a3c3999a",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:33:32.527387Z",
"start_time": "2023-06-03T08:33:32.501312Z"
},
"tags": []
},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6e104aee",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:33:35.503823Z",
"start_time": "2023-06-03T08:33:33.745832Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Inserting data...: 100%|██████████| 42/42 [00:00<00:00, 2801.49it/s]\n"
]
}
],
"source": [
"for d in docs:\n",
" d.metadata = {'some': 'metadata'}\n",
"settings = ClickhouseSettings(table=\"clickhouse_vector_search_example\")\n",
"docsearch = Clickhouse.from_documents(docs, embeddings, config=settings)\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9c608226",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while youre at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
"\n",
"Tonight, Id like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
"\n",
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
"\n",
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nations top legal minds, who will continue Justice Breyers legacy of excellence.\n"
]
}
],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "e3a8b105",
"metadata": {},
"source": [
"## Get connection info and data schema"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "69996818",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:28:58.252991Z",
"start_time": "2023-06-03T08:28:58.197560Z"
},
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[92m\u001b[1mdefault.clickhouse_vector_search_example @ localhost:8123\u001b[0m\n",
"\n",
"\u001b[1musername: None\u001b[0m\n",
"\n",
"Table Schema:\n",
"---------------------------------------------------\n",
"|\u001b[94mid \u001b[0m|\u001b[96mNullable(String) \u001b[0m|\n",
"|\u001b[94mdocument \u001b[0m|\u001b[96mNullable(String) \u001b[0m|\n",
"|\u001b[94membedding \u001b[0m|\u001b[96mArray(Float32) \u001b[0m|\n",
"|\u001b[94mmetadata \u001b[0m|\u001b[96mObject('json') \u001b[0m|\n",
"|\u001b[94muuid \u001b[0m|\u001b[96mUUID \u001b[0m|\n",
"---------------------------------------------------\n",
"\n"
]
}
],
"source": [
"print(str(docsearch))"
]
},
{
"cell_type": "markdown",
"id": "324ac147",
"metadata": {},
"source": [
"### Clickhouse table schema"
]
},
{
"cell_type": "markdown",
"id": "b5bd7c5b",
"metadata": {},
"source": [
"> Clickhouse table will be automatically created if not exist by default. Advanced users could pre-create the table with optimized settings. For distributed Clickhouse cluster with sharding, table engine should be configured as `Distributed`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "54f4f561",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clickhouse Table DDL:\n",
"\n",
"CREATE TABLE IF NOT EXISTS default.clickhouse_vector_search_example(\n",
" id Nullable(String),\n",
" document Nullable(String),\n",
" embedding Array(Float32),\n",
" metadata JSON,\n",
" uuid UUID DEFAULT generateUUIDv4(),\n",
" CONSTRAINT cons_vec_len CHECK length(embedding) = 1536,\n",
" INDEX vec_idx embedding TYPE annoy(100,'L2Distance') GRANULARITY 1000\n",
") ENGINE = MergeTree ORDER BY uuid SETTINGS index_granularity = 8192\n"
]
}
],
"source": [
"print(f\"Clickhouse Table DDL:\\n\\n{docsearch.schema}\")"
]
},
{
"cell_type": "markdown",
"id": "f59360c0",
"metadata": {},
"source": [
"## Filtering\n",
"\n",
"You can have direct access to ClickHouse SQL where statement. You can write `WHERE` clause following standard SQL.\n",
"\n",
"**NOTE**: Please be aware of SQL injection, this interface must not be directly called by end-user.\n",
"\n",
"If you custimized your `column_map` under your setting, you search with filter like this:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "232055f6",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:29:36.680805Z",
"start_time": "2023-06-03T08:29:34.963676Z"
}
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Inserting data...: 100%|██████████| 42/42 [00:00<00:00, 6939.56it/s]\n"
]
}
],
"source": [
"from langchain.vectorstores import Clickhouse, ClickhouseSettings\n",
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"for i, d in enumerate(docs):\n",
" d.metadata = {'doc_id': i}\n",
"\n",
"docsearch = Clickhouse.from_documents(docs, embeddings)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ddbcee77",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:29:43.487436Z",
"start_time": "2023-06-03T08:29:43.040831Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.6779101415357189 {'doc_id': 0} Madam Speaker, Madam...\n",
"0.6997970363474885 {'doc_id': 8} And so many families...\n",
"0.7044504914336727 {'doc_id': 1} Groups of citizens b...\n",
"0.7053558702165094 {'doc_id': 6} And Im taking robus...\n"
]
}
],
"source": [
"meta = docsearch.metadata_column\n",
"output = docsearch.similarity_search_with_relevance_scores('What did the president say about Ketanji Brown Jackson?', \n",
" k=4, where_str=f\"{meta}.doc_id<10\")\n",
"for d, dist in output:\n",
" print(dist, d.metadata, d.page_content[:20] + '...')"
]
},
{
"cell_type": "markdown",
"id": "a359ed74",
"metadata": {},
"source": [
"## Deleting your data"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "fb6a9d36",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-03T08:30:24.822384Z",
"start_time": "2023-06-03T08:30:24.798571Z"
}
},
"outputs": [],
"source": [
"docsearch.drop()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}