mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
5ab6b39098
- **Description:** Add attribution_token within GoogleVertexAISearchRetriever so user can provide this information to Google support team or product team during debug session. Reference: https://cloud.google.com/generative-ai-app-builder/docs/view-analytics#user-events Attribution tokens. Attribution tokens are unique IDs generated by Vertex AI Search and returned with each search request. Make sure to include that attribution token as UserEvent.attributionToken with any user events resulting from a search. This is needed to identify if a search is served by the API. Only user events with a Google-generated attribution token are used to compute metrics. - **Issue:** No - **Dependencies:** No - **Twitter handle:** abehsu1992626 --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
485 lines
18 KiB
Python
485 lines
18 KiB
Python
"""Retriever wrapper for Google Vertex AI Search."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
|
|
from langchain_core.retrievers import BaseRetriever
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.utilities.vertexai import get_client_info
|
|
|
|
if TYPE_CHECKING:
|
|
from google.api_core.client_options import ClientOptions
|
|
from google.cloud.discoveryengine_v1beta import (
|
|
ConversationalSearchServiceClient,
|
|
SearchRequest,
|
|
SearchResult,
|
|
SearchServiceClient,
|
|
)
|
|
|
|
|
|
class _BaseGoogleVertexAISearchRetriever(BaseModel):
|
|
project_id: str
|
|
"""Google Cloud Project ID."""
|
|
data_store_id: Optional[str] = None
|
|
"""Vertex AI Search data store ID."""
|
|
search_engine_id: Optional[str] = None
|
|
"""Vertex AI Search app ID."""
|
|
location_id: str = "global"
|
|
"""Vertex AI Search data store location."""
|
|
serving_config_id: str = "default_config"
|
|
"""Vertex AI Search serving config ID."""
|
|
credentials: Any = None
|
|
"""The default custom credentials (google.auth.credentials.Credentials) to use
|
|
when making API calls. If not provided, credentials will be ascertained from
|
|
the environment."""
|
|
engine_data_type: int = Field(default=0, ge=0, le=3)
|
|
""" Defines the Vertex AI Search app data type
|
|
0 - Unstructured data
|
|
1 - Structured data
|
|
2 - Website data
|
|
3 - Blended search
|
|
"""
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validates the environment."""
|
|
try:
|
|
from google.cloud import discoveryengine_v1beta # noqa: F401
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"google.cloud.discoveryengine is not installed."
|
|
"Please install it with pip install "
|
|
"google-cloud-discoveryengine>=0.11.10"
|
|
) from exc
|
|
try:
|
|
from google.api_core.exceptions import InvalidArgument # noqa: F401
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"google.api_core.exceptions is not installed. "
|
|
"Please install it with pip install google-api-core"
|
|
) from exc
|
|
|
|
values["project_id"] = get_from_dict_or_env(values, "project_id", "PROJECT_ID")
|
|
|
|
try:
|
|
values["data_store_id"] = get_from_dict_or_env(
|
|
values, "data_store_id", "DATA_STORE_ID"
|
|
)
|
|
values["search_engine_id"] = get_from_dict_or_env(
|
|
values, "search_engine_id", "SEARCH_ENGINE_ID"
|
|
)
|
|
except Exception:
|
|
pass
|
|
|
|
return values
|
|
|
|
@property
|
|
def client_options(self) -> "ClientOptions":
|
|
from google.api_core.client_options import ClientOptions
|
|
|
|
return ClientOptions(
|
|
api_endpoint=(
|
|
f"{self.location_id}-discoveryengine.googleapis.com"
|
|
if self.location_id != "global"
|
|
else None
|
|
)
|
|
)
|
|
|
|
def _convert_structured_search_response(
|
|
self, results: Sequence[SearchResult]
|
|
) -> List[Document]:
|
|
"""Converts a sequence of search results to a list of LangChain documents."""
|
|
import json
|
|
|
|
from google.protobuf.json_format import MessageToDict
|
|
|
|
documents: List[Document] = []
|
|
|
|
for result in results:
|
|
document_dict = MessageToDict(
|
|
result.document._pb, preserving_proto_field_name=True
|
|
)
|
|
|
|
documents.append(
|
|
Document(
|
|
page_content=json.dumps(document_dict.get("struct_data", {})),
|
|
metadata={"id": document_dict["id"], "name": document_dict["name"]},
|
|
)
|
|
)
|
|
|
|
return documents
|
|
|
|
def _convert_unstructured_search_response(
|
|
self, results: Sequence[SearchResult], chunk_type: str
|
|
) -> List[Document]:
|
|
"""Converts a sequence of search results to a list of LangChain documents."""
|
|
from google.protobuf.json_format import MessageToDict
|
|
|
|
documents: List[Document] = []
|
|
|
|
for result in results:
|
|
document_dict = MessageToDict(
|
|
result.document._pb, preserving_proto_field_name=True
|
|
)
|
|
derived_struct_data = document_dict.get("derived_struct_data")
|
|
if not derived_struct_data:
|
|
continue
|
|
|
|
doc_metadata = document_dict.get("struct_data", {})
|
|
doc_metadata["id"] = document_dict["id"]
|
|
|
|
if chunk_type not in derived_struct_data:
|
|
continue
|
|
|
|
for chunk in derived_struct_data[chunk_type]:
|
|
chunk_metadata = doc_metadata.copy()
|
|
chunk_metadata["source"] = derived_struct_data.get("link", "")
|
|
|
|
if chunk_type == "extractive_answers":
|
|
chunk_metadata["source"] += f":{chunk.get('pageNumber', '')}"
|
|
|
|
documents.append(
|
|
Document(
|
|
page_content=chunk.get("content", ""), metadata=chunk_metadata
|
|
)
|
|
)
|
|
|
|
return documents
|
|
|
|
def _convert_website_search_response(
|
|
self, results: Sequence[SearchResult], chunk_type: str
|
|
) -> List[Document]:
|
|
"""Converts a sequence of search results to a list of LangChain documents."""
|
|
from google.protobuf.json_format import MessageToDict
|
|
|
|
documents: List[Document] = []
|
|
|
|
for result in results:
|
|
document_dict = MessageToDict(
|
|
result.document._pb, preserving_proto_field_name=True
|
|
)
|
|
derived_struct_data = document_dict.get("derived_struct_data")
|
|
if not derived_struct_data:
|
|
continue
|
|
|
|
doc_metadata = document_dict.get("struct_data", {})
|
|
doc_metadata["id"] = document_dict["id"]
|
|
doc_metadata["source"] = derived_struct_data.get("link", "")
|
|
|
|
if chunk_type not in derived_struct_data:
|
|
continue
|
|
|
|
text_field = "snippet" if chunk_type == "snippets" else "content"
|
|
|
|
for chunk in derived_struct_data[chunk_type]:
|
|
documents.append(
|
|
Document(
|
|
page_content=chunk.get(text_field, ""), metadata=doc_metadata
|
|
)
|
|
)
|
|
|
|
if not documents:
|
|
print(f"No {chunk_type} could be found.") # noqa: T201
|
|
if chunk_type == "extractive_answers":
|
|
print( # noqa: T201
|
|
"Make sure that your data store is using Advanced Website "
|
|
"Indexing.\n"
|
|
"https://cloud.google.com/generative-ai-app-builder/docs/about-advanced-features#advanced-website-indexing" # noqa: E501
|
|
)
|
|
|
|
return documents
|
|
|
|
|
|
class GoogleVertexAISearchRetriever(BaseRetriever, _BaseGoogleVertexAISearchRetriever):
|
|
"""`Google Vertex AI Search` retriever.
|
|
|
|
For a detailed explanation of the Vertex AI Search concepts
|
|
and configuration parameters, refer to the product documentation.
|
|
https://cloud.google.com/generative-ai-app-builder/docs/enterprise-search-introduction
|
|
"""
|
|
|
|
filter: Optional[str] = None
|
|
"""Filter expression."""
|
|
get_extractive_answers: bool = False
|
|
"""If True return Extractive Answers, otherwise return Extractive Segments or Snippets.""" # noqa: E501
|
|
max_documents: int = Field(default=5, ge=1, le=100)
|
|
"""The maximum number of documents to return."""
|
|
max_extractive_answer_count: int = Field(default=1, ge=1, le=5)
|
|
"""The maximum number of extractive answers returned in each search result.
|
|
At most 5 answers will be returned for each SearchResult.
|
|
"""
|
|
max_extractive_segment_count: int = Field(default=1, ge=1, le=1)
|
|
"""The maximum number of extractive segments returned in each search result.
|
|
Currently one segment will be returned for each SearchResult.
|
|
"""
|
|
query_expansion_condition: int = Field(default=1, ge=0, le=2)
|
|
"""Specification to determine under which conditions query expansion should occur.
|
|
0 - Unspecified query expansion condition. In this case, server behavior defaults
|
|
to disabled
|
|
1 - Disabled query expansion. Only the exact search query is used, even if
|
|
SearchResponse.total_size is zero.
|
|
2 - Automatic query expansion built by the Search API.
|
|
"""
|
|
spell_correction_mode: int = Field(default=2, ge=0, le=2)
|
|
"""Specification to determine under which conditions query expansion should occur.
|
|
0 - Unspecified spell correction mode. In this case, server behavior defaults
|
|
to auto.
|
|
1 - Suggestion only. Search API will try to find a spell suggestion if there is any
|
|
and put in the `SearchResponse.corrected_query`.
|
|
The spell suggestion will not be used as the search query.
|
|
2 - Automatic spell correction built by the Search API.
|
|
Search will be based on the corrected query if found.
|
|
"""
|
|
|
|
_client: SearchServiceClient
|
|
_serving_config: str
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.ignore
|
|
arbitrary_types_allowed = True
|
|
underscore_attrs_are_private = True
|
|
|
|
def __init__(self, **kwargs: Any) -> None:
|
|
"""Initializes private fields."""
|
|
try:
|
|
from google.cloud.discoveryengine_v1beta import SearchServiceClient
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"google.cloud.discoveryengine is not installed."
|
|
"Please install it with pip install google-cloud-discoveryengine"
|
|
) from exc
|
|
|
|
super().__init__(**kwargs)
|
|
|
|
# For more information, refer to:
|
|
# https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
|
|
self._client = SearchServiceClient(
|
|
credentials=self.credentials,
|
|
client_options=self.client_options,
|
|
client_info=get_client_info(module="vertex-ai-search"),
|
|
)
|
|
|
|
if self.engine_data_type == 3 and not self.search_engine_id:
|
|
raise ValueError(
|
|
"search_engine_id must be specified for blended search apps."
|
|
)
|
|
|
|
if self.search_engine_id:
|
|
self._serving_config = f"projects/{self.project_id}/locations/{self.location_id}/collections/default_collection/engines/{self.search_engine_id}/servingConfigs/default_config" # noqa: E501
|
|
elif self.data_store_id:
|
|
self._serving_config = self._client.serving_config_path(
|
|
project=self.project_id,
|
|
location=self.location_id,
|
|
data_store=self.data_store_id,
|
|
serving_config=self.serving_config_id,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"Either data_store_id or search_engine_id must be specified."
|
|
)
|
|
|
|
def _create_search_request(self, query: str) -> SearchRequest:
|
|
"""Prepares a SearchRequest object."""
|
|
from google.cloud.discoveryengine_v1beta import SearchRequest
|
|
|
|
query_expansion_spec = SearchRequest.QueryExpansionSpec(
|
|
condition=self.query_expansion_condition,
|
|
)
|
|
|
|
spell_correction_spec = SearchRequest.SpellCorrectionSpec(
|
|
mode=self.spell_correction_mode
|
|
)
|
|
|
|
if self.engine_data_type == 0:
|
|
if self.get_extractive_answers:
|
|
extractive_content_spec = (
|
|
SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
|
|
max_extractive_answer_count=self.max_extractive_answer_count,
|
|
)
|
|
)
|
|
else:
|
|
extractive_content_spec = (
|
|
SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
|
|
max_extractive_segment_count=self.max_extractive_segment_count,
|
|
)
|
|
)
|
|
content_search_spec = SearchRequest.ContentSearchSpec(
|
|
extractive_content_spec=extractive_content_spec
|
|
)
|
|
elif self.engine_data_type == 1:
|
|
content_search_spec = None
|
|
elif self.engine_data_type in (2, 3):
|
|
content_search_spec = SearchRequest.ContentSearchSpec(
|
|
extractive_content_spec=SearchRequest.ContentSearchSpec.ExtractiveContentSpec(
|
|
max_extractive_answer_count=self.max_extractive_answer_count,
|
|
),
|
|
snippet_spec=SearchRequest.ContentSearchSpec.SnippetSpec(
|
|
return_snippet=True
|
|
),
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
"Only data store type 0 (Unstructured), 1 (Structured),"
|
|
"2 (Website), or 3 (Blended) are supported currently."
|
|
+ f" Got {self.engine_data_type}"
|
|
)
|
|
|
|
return SearchRequest(
|
|
query=query,
|
|
filter=self.filter,
|
|
serving_config=self._serving_config,
|
|
page_size=self.max_documents,
|
|
content_search_spec=content_search_spec,
|
|
query_expansion_spec=query_expansion_spec,
|
|
spell_correction_spec=spell_correction_spec,
|
|
)
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
"""Get documents relevant for a query."""
|
|
return self.get_relevant_documents_with_response(query)[0]
|
|
|
|
def get_relevant_documents_with_response(
|
|
self, query: str
|
|
) -> Tuple[List[Document], Any]:
|
|
from google.api_core.exceptions import InvalidArgument
|
|
|
|
search_request = self._create_search_request(query)
|
|
|
|
try:
|
|
response = self._client.search(search_request)
|
|
except InvalidArgument as exc:
|
|
raise type(exc)(
|
|
exc.message
|
|
+ " This might be due to engine_data_type not set correctly."
|
|
)
|
|
|
|
if self.engine_data_type == 0:
|
|
chunk_type = (
|
|
"extractive_answers"
|
|
if self.get_extractive_answers
|
|
else "extractive_segments"
|
|
)
|
|
documents = self._convert_unstructured_search_response(
|
|
response.results, chunk_type
|
|
)
|
|
elif self.engine_data_type == 1:
|
|
documents = self._convert_structured_search_response(response.results)
|
|
elif self.engine_data_type in (2, 3):
|
|
chunk_type = (
|
|
"extractive_answers" if self.get_extractive_answers else "snippets"
|
|
)
|
|
documents = self._convert_website_search_response(
|
|
response.results, chunk_type
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
"Only data store type 0 (Unstructured), 1 (Structured),"
|
|
"2 (Website), or 3 (Blended) are supported currently."
|
|
+ f" Got {self.engine_data_type}"
|
|
)
|
|
|
|
return documents, response
|
|
|
|
|
|
class GoogleVertexAIMultiTurnSearchRetriever(
|
|
BaseRetriever, _BaseGoogleVertexAISearchRetriever
|
|
):
|
|
"""`Google Vertex AI Search` retriever for multi-turn conversations."""
|
|
|
|
conversation_id: str = "-"
|
|
"""Vertex AI Search Conversation ID."""
|
|
|
|
_client: ConversationalSearchServiceClient
|
|
_serving_config: str
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.ignore
|
|
arbitrary_types_allowed = True
|
|
underscore_attrs_are_private = True
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
super().__init__(**kwargs)
|
|
from google.cloud.discoveryengine_v1beta import (
|
|
ConversationalSearchServiceClient,
|
|
)
|
|
|
|
self._client = ConversationalSearchServiceClient(
|
|
credentials=self.credentials,
|
|
client_options=self.client_options,
|
|
client_info=get_client_info(module="vertex-ai-search"),
|
|
)
|
|
|
|
if not self.data_store_id:
|
|
raise ValueError("data_store_id is required for MultiTurnSearchRetriever.")
|
|
|
|
self._serving_config = self._client.serving_config_path(
|
|
project=self.project_id,
|
|
location=self.location_id,
|
|
data_store=self.data_store_id,
|
|
serving_config=self.serving_config_id,
|
|
)
|
|
|
|
if self.engine_data_type == 1 or self.engine_data_type == 3:
|
|
raise NotImplementedError(
|
|
"Data store type 1 (Structured) and 3 (Blended)"
|
|
"is not currently supported for multi-turn search."
|
|
+ f" Got {self.engine_data_type}"
|
|
)
|
|
|
|
def _get_relevant_documents(
|
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
"""Get documents relevant for a query."""
|
|
from google.cloud.discoveryengine_v1beta import (
|
|
ConverseConversationRequest,
|
|
TextInput,
|
|
)
|
|
|
|
request = ConverseConversationRequest(
|
|
name=self._client.conversation_path(
|
|
self.project_id,
|
|
self.location_id,
|
|
self.data_store_id,
|
|
self.conversation_id,
|
|
),
|
|
serving_config=self._serving_config,
|
|
query=TextInput(input=query),
|
|
)
|
|
response = self._client.converse_conversation(request)
|
|
|
|
if self.engine_data_type == 2:
|
|
return self._convert_website_search_response(
|
|
response.search_results, "extractive_answers"
|
|
)
|
|
|
|
return self._convert_unstructured_search_response(
|
|
response.search_results, "extractive_answers"
|
|
)
|
|
|
|
|
|
class GoogleCloudEnterpriseSearchRetriever(GoogleVertexAISearchRetriever):
|
|
"""`Google Vertex Search API` retriever alias for backwards compatibility.
|
|
DEPRECATED: Use `GoogleVertexAISearchRetriever` instead.
|
|
"""
|
|
|
|
def __init__(self, **data: Any):
|
|
import warnings
|
|
|
|
warnings.warn(
|
|
"GoogleCloudEnterpriseSearchRetriever is deprecated, use GoogleVertexAISearchRetriever", # noqa: E501
|
|
DeprecationWarning,
|
|
)
|
|
|
|
super().__init__(**data)
|