mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
ac1dd8ad94
- **Description**: `bigdl-llm` library has been renamed to [`ipex-llm`](https://github.com/intel-analytics/ipex-llm). This PR migrates the `bigdl-llm` integration to `ipex-llm` . - **Issue**: N/A. The original PR of `bigdl-llm` is https://github.com/langchain-ai/langchain/pull/17953 - **Dependencies**: `ipex-llm` library - **Contribution maintainer**: @shane-huang Updated doc: docs/docs/integrations/llms/ipex_llm.ipynb Updated test: libs/community/tests/integration_tests/llms/test_ipex_llm.py
146 lines
4.2 KiB
Python
146 lines
4.2 KiB
Python
import logging
|
|
from typing import Any, Optional
|
|
|
|
from langchain_core.language_models.llms import LLM
|
|
|
|
from langchain_community.llms.ipex_llm import IpexLLM
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BigdlLLM(IpexLLM):
|
|
"""Wrapper around the BigdlLLM model
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import BigdlLLM
|
|
llm = BigdlLLM.from_model_id(model_id="THUDM/chatglm-6b")
|
|
"""
|
|
|
|
@classmethod
|
|
def from_model_id(
|
|
cls,
|
|
model_id: str,
|
|
model_kwargs: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> LLM:
|
|
"""
|
|
Construct object from model_id
|
|
|
|
Args:
|
|
model_id: Path for the huggingface repo id to be downloaded or
|
|
the huggingface checkpoint folder.
|
|
model_kwargs: Keyword arguments to pass to the model and tokenizer.
|
|
kwargs: Extra arguments to pass to the model and tokenizer.
|
|
|
|
Returns:
|
|
An object of BigdlLLM.
|
|
"""
|
|
logger.warning("BigdlLLM was deprecated. Please use IpexLLM instead.")
|
|
|
|
try:
|
|
from bigdl.llm.transformers import (
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
)
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import bigdl-llm or transformers. "
|
|
"Please install it with `pip install --pre --upgrade bigdl-llm[all]`."
|
|
)
|
|
|
|
_model_kwargs = model_kwargs or {}
|
|
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
|
except Exception:
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_id, **_model_kwargs)
|
|
|
|
try:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, load_in_4bit=True, **_model_kwargs
|
|
)
|
|
except Exception:
|
|
model = AutoModel.from_pretrained(
|
|
model_id, load_in_4bit=True, **_model_kwargs
|
|
)
|
|
|
|
if "trust_remote_code" in _model_kwargs:
|
|
_model_kwargs = {
|
|
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
|
}
|
|
|
|
return cls(
|
|
model_id=model_id,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
model_kwargs=_model_kwargs,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_model_id_low_bit(
|
|
cls,
|
|
model_id: str,
|
|
model_kwargs: Optional[dict] = None,
|
|
**kwargs: Any,
|
|
) -> LLM:
|
|
"""
|
|
Construct low_bit object from model_id
|
|
|
|
Args:
|
|
|
|
model_id: Path for the bigdl-llm transformers low-bit model folder.
|
|
model_kwargs: Keyword arguments to pass to the model and tokenizer.
|
|
kwargs: Extra arguments to pass to the model and tokenizer.
|
|
|
|
Returns:
|
|
An object of BigdlLLM.
|
|
"""
|
|
|
|
logger.warning("BigdlLLM was deprecated. Please use IpexLLM instead.")
|
|
|
|
try:
|
|
from bigdl.llm.transformers import (
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
)
|
|
from transformers import AutoTokenizer, LlamaTokenizer
|
|
|
|
except ImportError:
|
|
raise ValueError(
|
|
"Could not import bigdl-llm or transformers. "
|
|
"Please install it with `pip install --pre --upgrade bigdl-llm[all]`."
|
|
)
|
|
|
|
_model_kwargs = model_kwargs or {}
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
|
except Exception:
|
|
tokenizer = LlamaTokenizer.from_pretrained(model_id, **_model_kwargs)
|
|
|
|
try:
|
|
model = AutoModelForCausalLM.load_low_bit(model_id, **_model_kwargs)
|
|
except Exception:
|
|
model = AutoModel.load_low_bit(model_id, **_model_kwargs)
|
|
|
|
if "trust_remote_code" in _model_kwargs:
|
|
_model_kwargs = {
|
|
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
|
}
|
|
|
|
return cls(
|
|
model_id=model_id,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
model_kwargs=_model_kwargs,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "bigdl-llm"
|