mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
3894b4d9a5
Ref: https://openai.com/pricing <!-- Thank you for contributing to LangChain! Please title your PR "<package>: <description>", where <package> is whichever of langchain, community, core, experimental, etc. is being modified. Replace this entire comment with: - **Description:** a description of the change, - **Issue:** the issue # it fixes if applicable, - **Dependencies:** any dependencies required for this change, - **Twitter handle:** we announce bigger features on Twitter. If your PR gets announced, and you'd like a mention, we'll gladly shout you out! Please make sure your PR is passing linting and testing before submitting. Run `make format`, `make lint` and `make test` from the root of the package you've modified to check this locally. See contribution guidelines for more information on how to write/run tests, lint, etc: https://python.langchain.com/docs/contributing/ If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. If no one reviews your PR within a few days, please @-mention one of @baskaryan, @eyurtsev, @hwchase17. -->
237 lines
8.1 KiB
Python
237 lines
8.1 KiB
Python
"""Callback Handler that prints to std out."""
|
|
import threading
|
|
from typing import Any, Dict, List
|
|
|
|
from langchain_core.callbacks import BaseCallbackHandler
|
|
from langchain_core.outputs import LLMResult
|
|
|
|
MODEL_COST_PER_1K_TOKENS = {
|
|
# GPT-4 input
|
|
"gpt-4": 0.03,
|
|
"gpt-4-0314": 0.03,
|
|
"gpt-4-0613": 0.03,
|
|
"gpt-4-32k": 0.06,
|
|
"gpt-4-32k-0314": 0.06,
|
|
"gpt-4-32k-0613": 0.06,
|
|
"gpt-4-vision-preview": 0.01,
|
|
"gpt-4-1106-preview": 0.01,
|
|
"gpt-4-0125-preview": 0.01,
|
|
"gpt-4-turbo-preview": 0.01,
|
|
# GPT-4 output
|
|
"gpt-4-completion": 0.06,
|
|
"gpt-4-0314-completion": 0.06,
|
|
"gpt-4-0613-completion": 0.06,
|
|
"gpt-4-32k-completion": 0.12,
|
|
"gpt-4-32k-0314-completion": 0.12,
|
|
"gpt-4-32k-0613-completion": 0.12,
|
|
"gpt-4-vision-preview-completion": 0.03,
|
|
"gpt-4-1106-preview-completion": 0.03,
|
|
"gpt-4-0125-preview-completion": 0.03,
|
|
"gpt-4-turbo-preview-completion": 0.03,
|
|
# GPT-3.5 input
|
|
# gpt-3.5-turbo points at gpt-3.5-turbo-0613 until Feb 16, 2024.
|
|
# Switches to gpt-3.5-turbo-0125 after.
|
|
"gpt-3.5-turbo": 0.0015,
|
|
"gpt-3.5-turbo-0125": 0.0005,
|
|
"gpt-3.5-turbo-0301": 0.0015,
|
|
"gpt-3.5-turbo-0613": 0.0015,
|
|
"gpt-3.5-turbo-1106": 0.001,
|
|
"gpt-3.5-turbo-instruct": 0.0015,
|
|
"gpt-3.5-turbo-16k": 0.003,
|
|
"gpt-3.5-turbo-16k-0613": 0.003,
|
|
# GPT-3.5 output
|
|
# gpt-3.5-turbo points at gpt-3.5-turbo-0613 until Feb 16, 2024.
|
|
# Switches to gpt-3.5-turbo-0125 after.
|
|
"gpt-3.5-turbo-completion": 0.002,
|
|
"gpt-3.5-turbo-0125-completion": 0.0015,
|
|
"gpt-3.5-turbo-0301-completion": 0.002,
|
|
"gpt-3.5-turbo-0613-completion": 0.002,
|
|
"gpt-3.5-turbo-1106-completion": 0.002,
|
|
"gpt-3.5-turbo-instruct-completion": 0.002,
|
|
"gpt-3.5-turbo-16k-completion": 0.004,
|
|
"gpt-3.5-turbo-16k-0613-completion": 0.004,
|
|
# Azure GPT-35 input
|
|
"gpt-35-turbo": 0.0015, # Azure OpenAI version of ChatGPT
|
|
"gpt-35-turbo-0301": 0.0015, # Azure OpenAI version of ChatGPT
|
|
"gpt-35-turbo-0613": 0.0015,
|
|
"gpt-35-turbo-instruct": 0.0015,
|
|
"gpt-35-turbo-16k": 0.003,
|
|
"gpt-35-turbo-16k-0613": 0.003,
|
|
# Azure GPT-35 output
|
|
"gpt-35-turbo-completion": 0.002, # Azure OpenAI version of ChatGPT
|
|
"gpt-35-turbo-0301-completion": 0.002, # Azure OpenAI version of ChatGPT
|
|
"gpt-35-turbo-0613-completion": 0.002,
|
|
"gpt-35-turbo-instruct-completion": 0.002,
|
|
"gpt-35-turbo-16k-completion": 0.004,
|
|
"gpt-35-turbo-16k-0613-completion": 0.004,
|
|
# Others
|
|
"text-ada-001": 0.0004,
|
|
"ada": 0.0004,
|
|
"text-babbage-001": 0.0005,
|
|
"babbage": 0.0005,
|
|
"text-curie-001": 0.002,
|
|
"curie": 0.002,
|
|
"text-davinci-003": 0.02,
|
|
"text-davinci-002": 0.02,
|
|
"code-davinci-002": 0.02,
|
|
# Fine Tuned input
|
|
"babbage-002-finetuned": 0.0016,
|
|
"davinci-002-finetuned": 0.012,
|
|
"gpt-3.5-turbo-0613-finetuned": 0.012,
|
|
"gpt-3.5-turbo-1106-finetuned": 0.012,
|
|
# Fine Tuned output
|
|
"babbage-002-finetuned-completion": 0.0016,
|
|
"davinci-002-finetuned-completion": 0.012,
|
|
"gpt-3.5-turbo-0613-finetuned-completion": 0.016,
|
|
"gpt-3.5-turbo-1106-finetuned-completion": 0.016,
|
|
# Azure Fine Tuned input
|
|
"babbage-002-azure-finetuned": 0.0004,
|
|
"davinci-002-azure-finetuned": 0.002,
|
|
"gpt-35-turbo-0613-azure-finetuned": 0.0015,
|
|
# Azure Fine Tuned output
|
|
"babbage-002-azure-finetuned-completion": 0.0004,
|
|
"davinci-002-azure-finetuned-completion": 0.002,
|
|
"gpt-35-turbo-0613-azure-finetuned-completion": 0.002,
|
|
# Legacy fine-tuned models
|
|
"ada-finetuned-legacy": 0.0016,
|
|
"babbage-finetuned-legacy": 0.0024,
|
|
"curie-finetuned-legacy": 0.012,
|
|
"davinci-finetuned-legacy": 0.12,
|
|
}
|
|
|
|
|
|
def standardize_model_name(
|
|
model_name: str,
|
|
is_completion: bool = False,
|
|
) -> str:
|
|
"""
|
|
Standardize the model name to a format that can be used in the OpenAI API.
|
|
|
|
Args:
|
|
model_name: Model name to standardize.
|
|
is_completion: Whether the model is used for completion or not.
|
|
Defaults to False.
|
|
|
|
Returns:
|
|
Standardized model name.
|
|
|
|
"""
|
|
model_name = model_name.lower()
|
|
if ".ft-" in model_name:
|
|
model_name = model_name.split(".ft-")[0] + "-azure-finetuned"
|
|
if ":ft-" in model_name:
|
|
model_name = model_name.split(":")[0] + "-finetuned-legacy"
|
|
if "ft:" in model_name:
|
|
model_name = model_name.split(":")[1] + "-finetuned"
|
|
if is_completion and (
|
|
model_name.startswith("gpt-4")
|
|
or model_name.startswith("gpt-3.5")
|
|
or model_name.startswith("gpt-35")
|
|
or ("finetuned" in model_name and "legacy" not in model_name)
|
|
):
|
|
return model_name + "-completion"
|
|
else:
|
|
return model_name
|
|
|
|
|
|
def get_openai_token_cost_for_model(
|
|
model_name: str, num_tokens: int, is_completion: bool = False
|
|
) -> float:
|
|
"""
|
|
Get the cost in USD for a given model and number of tokens.
|
|
|
|
Args:
|
|
model_name: Name of the model
|
|
num_tokens: Number of tokens.
|
|
is_completion: Whether the model is used for completion or not.
|
|
Defaults to False.
|
|
|
|
Returns:
|
|
Cost in USD.
|
|
"""
|
|
model_name = standardize_model_name(model_name, is_completion=is_completion)
|
|
if model_name not in MODEL_COST_PER_1K_TOKENS:
|
|
raise ValueError(
|
|
f"Unknown model: {model_name}. Please provide a valid OpenAI model name."
|
|
"Known models are: " + ", ".join(MODEL_COST_PER_1K_TOKENS.keys())
|
|
)
|
|
return MODEL_COST_PER_1K_TOKENS[model_name] * (num_tokens / 1000)
|
|
|
|
|
|
class OpenAICallbackHandler(BaseCallbackHandler):
|
|
"""Callback Handler that tracks OpenAI info."""
|
|
|
|
total_tokens: int = 0
|
|
prompt_tokens: int = 0
|
|
completion_tokens: int = 0
|
|
successful_requests: int = 0
|
|
total_cost: float = 0.0
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self._lock = threading.Lock()
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"Tokens Used: {self.total_tokens}\n"
|
|
f"\tPrompt Tokens: {self.prompt_tokens}\n"
|
|
f"\tCompletion Tokens: {self.completion_tokens}\n"
|
|
f"Successful Requests: {self.successful_requests}\n"
|
|
f"Total Cost (USD): ${self.total_cost}"
|
|
)
|
|
|
|
@property
|
|
def always_verbose(self) -> bool:
|
|
"""Whether to call verbose callbacks even if verbose is False."""
|
|
return True
|
|
|
|
def on_llm_start(
|
|
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
|
) -> None:
|
|
"""Print out the prompts."""
|
|
pass
|
|
|
|
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
|
"""Print out the token."""
|
|
pass
|
|
|
|
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
|
"""Collect token usage."""
|
|
if response.llm_output is None:
|
|
return None
|
|
|
|
if "token_usage" not in response.llm_output:
|
|
with self._lock:
|
|
self.successful_requests += 1
|
|
return None
|
|
|
|
# compute tokens and cost for this request
|
|
token_usage = response.llm_output["token_usage"]
|
|
completion_tokens = token_usage.get("completion_tokens", 0)
|
|
prompt_tokens = token_usage.get("prompt_tokens", 0)
|
|
model_name = standardize_model_name(response.llm_output.get("model_name", ""))
|
|
if model_name in MODEL_COST_PER_1K_TOKENS:
|
|
completion_cost = get_openai_token_cost_for_model(
|
|
model_name, completion_tokens, is_completion=True
|
|
)
|
|
prompt_cost = get_openai_token_cost_for_model(model_name, prompt_tokens)
|
|
else:
|
|
completion_cost = 0
|
|
prompt_cost = 0
|
|
|
|
# update shared state behind lock
|
|
with self._lock:
|
|
self.total_cost += prompt_cost + completion_cost
|
|
self.total_tokens += token_usage.get("total_tokens", 0)
|
|
self.prompt_tokens += prompt_tokens
|
|
self.completion_tokens += completion_tokens
|
|
self.successful_requests += 1
|
|
|
|
def __copy__(self) -> "OpenAICallbackHandler":
|
|
"""Return a copy of the callback handler."""
|
|
return self
|
|
|
|
def __deepcopy__(self, memo: Any) -> "OpenAICallbackHandler":
|
|
"""Return a deep copy of the callback handler."""
|
|
return self
|