mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
b5cd1e0fed
Clearly document that the PAL and CPAL techniques involve generating code, and that such code must be properly sandboxed and given appropriate narrowly-scoped credentials in order to ensure security. While our implementations include some mitigations, Python and SQL sandboxing is well-known to be a very hard problem and our mitigations are no replacement for proper sandboxing and permissions management. The implementation of such techniques must be performed outside the scope of the Python process where this package's code runs, so its correct setup and administration must therefore be the responsibility of the user of this code.
303 lines
11 KiB
Python
303 lines
11 KiB
Python
"""
|
|
CPAL Chain and its subchains
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
from typing import Any, ClassVar, Dict, List, Optional, Type
|
|
|
|
from langchain.base_language import BaseLanguageModel
|
|
from langchain.callbacks.manager import CallbackManagerForChainRun
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.output_parsers import PydanticOutputParser
|
|
from langchain.prompts.prompt import PromptTemplate
|
|
|
|
from langchain_experimental import pydantic_v1 as pydantic
|
|
from langchain_experimental.cpal.constants import Constant
|
|
from langchain_experimental.cpal.models import (
|
|
CausalModel,
|
|
InterventionModel,
|
|
NarrativeModel,
|
|
QueryModel,
|
|
StoryModel,
|
|
)
|
|
from langchain_experimental.cpal.templates.univariate.causal import (
|
|
template as causal_template,
|
|
)
|
|
from langchain_experimental.cpal.templates.univariate.intervention import (
|
|
template as intervention_template,
|
|
)
|
|
from langchain_experimental.cpal.templates.univariate.narrative import (
|
|
template as narrative_template,
|
|
)
|
|
from langchain_experimental.cpal.templates.univariate.query import (
|
|
template as query_template,
|
|
)
|
|
|
|
|
|
class _BaseStoryElementChain(Chain):
|
|
chain: LLMChain
|
|
input_key: str = Constant.narrative_input.value #: :meta private:
|
|
output_key: str = Constant.chain_answer.value #: :meta private:
|
|
pydantic_model: ClassVar[
|
|
Optional[Type[pydantic.BaseModel]]
|
|
] = None #: :meta private:
|
|
template: ClassVar[Optional[str]] = None #: :meta private:
|
|
|
|
@classmethod
|
|
def parser(cls) -> PydanticOutputParser:
|
|
"""Parse LLM output into a pydantic object."""
|
|
if cls.pydantic_model is None:
|
|
raise NotImplementedError(
|
|
f"pydantic_model not implemented for {cls.__name__}"
|
|
)
|
|
return PydanticOutputParser(pydantic_object=cls.pydantic_model)
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the input keys.
|
|
|
|
:meta private:
|
|
"""
|
|
return [self.input_key]
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return the output keys.
|
|
|
|
:meta private:
|
|
"""
|
|
_output_keys = [self.output_key]
|
|
return _output_keys
|
|
|
|
@classmethod
|
|
def from_univariate_prompt(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
return cls(
|
|
chain=LLMChain(
|
|
llm=llm,
|
|
prompt=PromptTemplate(
|
|
input_variables=[Constant.narrative_input.value],
|
|
template=kwargs.get("template", cls.template),
|
|
partial_variables={
|
|
"format_instructions": cls.parser().get_format_instructions()
|
|
},
|
|
),
|
|
),
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, Any]:
|
|
completion = self.chain.run(inputs[self.input_key])
|
|
pydantic_data = self.__class__.parser().parse(completion)
|
|
return {
|
|
Constant.chain_data.value: pydantic_data,
|
|
Constant.chain_answer.value: None,
|
|
}
|
|
|
|
|
|
class NarrativeChain(_BaseStoryElementChain):
|
|
"""Decompose the narrative into its story elements
|
|
|
|
- causal model
|
|
- query
|
|
- intervention
|
|
"""
|
|
|
|
pydantic_model: ClassVar[Type[pydantic.BaseModel]] = NarrativeModel
|
|
template: ClassVar[str] = narrative_template
|
|
|
|
|
|
class CausalChain(_BaseStoryElementChain):
|
|
"""Translate the causal narrative into a stack of operations."""
|
|
|
|
pydantic_model: ClassVar[Type[pydantic.BaseModel]] = CausalModel
|
|
template: ClassVar[str] = causal_template
|
|
|
|
|
|
class InterventionChain(_BaseStoryElementChain):
|
|
"""Set the hypothetical conditions for the causal model."""
|
|
|
|
pydantic_model: ClassVar[Type[pydantic.BaseModel]] = InterventionModel
|
|
template: ClassVar[str] = intervention_template
|
|
|
|
|
|
class QueryChain(_BaseStoryElementChain):
|
|
"""Query the outcome table using SQL.
|
|
|
|
*Security note*: This class implements an AI technique that generates SQL code.
|
|
If those SQL commands are executed, it's critical to ensure they use credentials
|
|
that are narrowly-scoped to only include the permissions this chain needs.
|
|
Failure to do so may result in data corruption or loss, since this chain may
|
|
attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this chain.
|
|
"""
|
|
|
|
pydantic_model: ClassVar[Type[pydantic.BaseModel]] = QueryModel
|
|
template: ClassVar[str] = query_template # TODO: incl. table schema
|
|
|
|
|
|
class CPALChain(_BaseStoryElementChain):
|
|
"""Causal program-aided language (CPAL) chain implementation.
|
|
|
|
*Security note*: The building blocks of this class include the implementation
|
|
of an AI technique that generates SQL code. If those SQL commands
|
|
are executed, it's critical to ensure they use credentials that
|
|
are narrowly-scoped to only include the permissions this chain needs.
|
|
Failure to do so may result in data corruption or loss, since this chain may
|
|
attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this chain.
|
|
"""
|
|
|
|
llm: BaseLanguageModel
|
|
narrative_chain: Optional[NarrativeChain] = None
|
|
causal_chain: Optional[CausalChain] = None
|
|
intervention_chain: Optional[InterventionChain] = None
|
|
query_chain: Optional[QueryChain] = None
|
|
_story: StoryModel = pydantic.PrivateAttr(default=None) # TODO: change name ?
|
|
|
|
@classmethod
|
|
def from_univariate_prompt(
|
|
cls,
|
|
llm: BaseLanguageModel,
|
|
**kwargs: Any,
|
|
) -> CPALChain:
|
|
"""instantiation depends on component chains
|
|
|
|
*Security note*: The building blocks of this class include the implementation
|
|
of an AI technique that generates SQL code. If those SQL commands
|
|
are executed, it's critical to ensure they use credentials that
|
|
are narrowly-scoped to only include the permissions this chain needs.
|
|
Failure to do so may result in data corruption or loss, since this chain may
|
|
attempt commands like `DROP TABLE` or `INSERT` if appropriately prompted.
|
|
The best way to guard against such negative outcomes is to (as appropriate)
|
|
limit the permissions granted to the credentials used with this chain.
|
|
"""
|
|
return cls(
|
|
llm=llm,
|
|
chain=LLMChain(
|
|
llm=llm,
|
|
prompt=PromptTemplate(
|
|
input_variables=["question", "query_result"],
|
|
template=(
|
|
"Summarize this answer '{query_result}' to this "
|
|
"question '{question}'? "
|
|
),
|
|
),
|
|
),
|
|
narrative_chain=NarrativeChain.from_univariate_prompt(llm=llm),
|
|
causal_chain=CausalChain.from_univariate_prompt(llm=llm),
|
|
intervention_chain=InterventionChain.from_univariate_prompt(llm=llm),
|
|
query_chain=QueryChain.from_univariate_prompt(llm=llm),
|
|
**kwargs,
|
|
)
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
**kwargs: Any,
|
|
) -> Dict[str, Any]:
|
|
# instantiate component chains
|
|
if self.narrative_chain is None:
|
|
self.narrative_chain = NarrativeChain.from_univariate_prompt(llm=self.llm)
|
|
if self.causal_chain is None:
|
|
self.causal_chain = CausalChain.from_univariate_prompt(llm=self.llm)
|
|
if self.intervention_chain is None:
|
|
self.intervention_chain = InterventionChain.from_univariate_prompt(
|
|
llm=self.llm
|
|
)
|
|
if self.query_chain is None:
|
|
self.query_chain = QueryChain.from_univariate_prompt(llm=self.llm)
|
|
|
|
# decompose narrative into three causal story elements
|
|
narrative = self.narrative_chain(inputs[Constant.narrative_input.value])[
|
|
Constant.chain_data.value
|
|
]
|
|
|
|
story = StoryModel(
|
|
causal_operations=self.causal_chain(narrative.story_plot)[
|
|
Constant.chain_data.value
|
|
],
|
|
intervention=self.intervention_chain(narrative.story_hypothetical)[
|
|
Constant.chain_data.value
|
|
],
|
|
query=self.query_chain(narrative.story_outcome_question)[
|
|
Constant.chain_data.value
|
|
],
|
|
)
|
|
self._story = story
|
|
|
|
def pretty_print_str(title: str, d: str) -> str:
|
|
return title + "\n" + d
|
|
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
_run_manager.on_text(
|
|
pretty_print_str("story outcome data", story._outcome_table.to_string()),
|
|
color="green",
|
|
end="\n\n",
|
|
verbose=self.verbose,
|
|
)
|
|
|
|
def pretty_print_dict(title: str, d: dict) -> str:
|
|
return title + "\n" + json.dumps(d, indent=4)
|
|
|
|
_run_manager.on_text(
|
|
pretty_print_dict("query data", story.query.dict()),
|
|
color="blue",
|
|
end="\n\n",
|
|
verbose=self.verbose,
|
|
)
|
|
if story.query._result_table.empty:
|
|
# prevent piping bad data into subsequent chains
|
|
raise ValueError(
|
|
(
|
|
"unanswerable, query and outcome are incoherent\n"
|
|
"\n"
|
|
"outcome:\n"
|
|
f"{story._outcome_table}\n"
|
|
"query:\n"
|
|
f"{story.query.dict()}"
|
|
)
|
|
)
|
|
else:
|
|
query_result = float(story.query._result_table.values[0][-1])
|
|
if False:
|
|
"""TODO: add this back in when demanded by composable chains"""
|
|
reporting_chain = self.chain
|
|
human_report = reporting_chain.run(
|
|
question=story.query.question, query_result=query_result
|
|
)
|
|
query_result = {
|
|
"query_result": query_result,
|
|
"human_report": human_report,
|
|
}
|
|
output = {
|
|
Constant.chain_data.value: story,
|
|
self.output_key: query_result,
|
|
**kwargs,
|
|
}
|
|
return output
|
|
|
|
def draw(self, **kwargs: Any) -> None:
|
|
"""
|
|
CPAL chain can draw its resulting DAG.
|
|
|
|
Usage in a jupyter notebook:
|
|
|
|
>>> from IPython.display import SVG
|
|
>>> cpal_chain.draw(path="graph.svg")
|
|
>>> SVG('graph.svg')
|
|
"""
|
|
self._story._networkx_wrapper.draw_graphviz(**kwargs)
|