langchain/langchain/embeddings/tensorflow_hub.py
Leonid Ganeline c28cc0f1ac
changed ValueError to ImportError (#5103)
# changed ValueError to ImportError

Code cleaning.
Fixed inconsistencies in ImportError handling. Sometimes it raises
ImportError and sometime ValueError.
I've changed all cases to the `raise ImportError`
Also:
- added installation instruction in the error message, where it missed;
- fixed several installation instructions in the error message;
- fixed several error handling in regards to the ImportError
2023-05-22 15:24:45 -07:00

78 lines
2.4 KiB
Python

"""Wrapper around TensorflowHub embedding models."""
from typing import Any, List
from pydantic import BaseModel, Extra
from langchain.embeddings.base import Embeddings
DEFAULT_MODEL_URL = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
class TensorflowHubEmbeddings(BaseModel, Embeddings):
"""Wrapper around tensorflow_hub embedding models.
To use, you should have the ``tensorflow_text`` python package installed.
Example:
.. code-block:: python
from langchain.embeddings import TensorflowHubEmbeddings
url = "https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"
tf = TensorflowHubEmbeddings(model_url=url)
"""
embed: Any #: :meta private:
model_url: str = DEFAULT_MODEL_URL
"""Model name to use."""
def __init__(self, **kwargs: Any):
"""Initialize the tensorflow_hub and tensorflow_text."""
super().__init__(**kwargs)
try:
import tensorflow_hub
except ImportError:
raise ImportError(
"Could not import tensorflow-hub python package. "
"Please install it with `pip install tensorflow-hub``."
)
try:
import tensorflow_text # noqa
except ImportError:
raise ImportError(
"Could not import tensorflow_text python package. "
"Please install it with `pip install tensorflow_text``."
)
self.embed = tensorflow_hub.load(self.model_url)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a TensorflowHub embedding model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
texts = list(map(lambda x: x.replace("\n", " "), texts))
embeddings = self.embed(texts).numpy()
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a TensorflowHub embedding model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
text = text.replace("\n", " ")
embedding = self.embed([text]).numpy()[0]
return embedding.tolist()