mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
d60e93b6ae
## **Description:** MongoDB integration tests link to a provided Atlas Cluster. We have very stringent permissions set against the cluster provided. In order to make it easier to track and isolate the collections each test gets run against, we've updated the collection names to map the test file name. i.e. `langchain_{filename}` => `langchain_test_vectorstores` Fixes integration test results ![image](https://github.com/langchain-ai/langchain/assets/2887713/41f911b9-55f7-4fe4-9134-5514b82009f9) ## **Dependencies:** Provided MONGODB_ATLAS_URI - [x] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ cc: @shaneharvey, @blink1073 , @NoahStapp , @caseyclements |
||
---|---|---|
.. | ||
langchain_mongodb | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-mongodb
Installation
pip install -U langchain-mongodb
Usage
- See integrations doc for more in-depth usage instructions.
- See Getting Started with the LangChain Integration for a walkthrough on using your first LangChain implementation with MongoDB Atlas.
Using MongoDBAtlasVectorSearch
from langchain_mongodb import MongoDBAtlasVectorSearch
# Pull MongoDB Atlas URI from environment variables
MONGODB_ATLAS_CLUSTER_URI = os.environ.get("MONGODB_ATLAS_CLUSTER_URI")
DB_NAME = "langchain_db"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name"
MONGODB_COLLECTION = client[DB_NAME][COLLECITON_NAME]
# Create the vector search via `from_connection_string`
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
MONGODB_ATLAS_CLUSTER_URI,
DB_NAME + "." + COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
# Initialize MongoDB python client
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
# Create the vector search via instantiation
vector_search_2 = MongoDBAtlasVectorSearch(
collection=MONGODB_COLLECTION,
embeddings=OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)