langchain/docs/extras/guides/evaluation/sql_qa_benchmarking_chinook.ipynb
Davis Chase 87e502c6bc
Doc refactor (#6300)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-16 11:52:56 -07:00

429 lines
10 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "984169ca",
"metadata": {},
"source": [
"# SQL Question Answering Benchmarking: Chinook\n",
"\n",
"Here we go over how to benchmark performance on a question answering task over a SQL database.\n",
"\n",
"It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "44874486",
"metadata": {},
"outputs": [],
"source": [
"# Comment this out if you are NOT using tracing\n",
"import os\n",
"\n",
"os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
]
},
{
"cell_type": "markdown",
"id": "0f66405e",
"metadata": {},
"source": [
"## Loading the data\n",
"\n",
"First, let's load the data."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0df1393f",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b220d07ee5d14909bc842b4545cdc0de",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading readme: 0%| | 0.00/21.0 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading and preparing dataset json/LangChainDatasets--sql-qa-chinook to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--sql-qa-chinook-7528565d2d992b47/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e89e3c8ef76f49889c4b39c624828c71",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8421df6c26045e8978c7086cb418222",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading data: 0%| | 0.00/1.44k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d1fb6becc3324a85bf039a53caf30924",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating train split: 0 examples [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset json downloaded and prepared to /Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--sql-qa-chinook-7528565d2d992b47/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9d68ad1b3e4a4bd79f92597aac4d3cc9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"sql-qa-chinook\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "ab44d504",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'How many employees are there?', 'answer': '8'}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset[0]"
]
},
{
"cell_type": "markdown",
"id": "8a16b75d",
"metadata": {},
"source": [
"## Setting up a chain\n",
"This uses the example Chinook database.\n",
"To set it up follow the instructions on https://database.guide/2-sample-databases-sqlite/, placing the `.db` file in a notebooks folder at the root of this repository.\n",
"\n",
"Note that here we load a simple chain. If you want to experiment with more complex chains, or an agent, just create the `chain` object in a different way."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "5b2d5e98",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, SQLDatabase, SQLDatabaseChain"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "33cdcbfc",
"metadata": {},
"outputs": [],
"source": [
"db = SQLDatabase.from_uri(\"sqlite:///../../../notebooks/Chinook.db\")\n",
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "markdown",
"id": "f0b5d8f6",
"metadata": {},
"source": [
"Now we can create a SQL database chain."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8843cb0c",
"metadata": {},
"outputs": [],
"source": [
"chain = SQLDatabaseChain.from_llm(llm, db, input_key=\"question\")"
]
},
{
"cell_type": "markdown",
"id": "6c0062e7",
"metadata": {},
"source": [
"## Make a prediction\n",
"\n",
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "d28c5e7d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'How many employees are there?',\n",
" 'answer': '8',\n",
" 'result': ' There are 8 employees.'}"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain(dataset[0])"
]
},
{
"cell_type": "markdown",
"id": "d0c16cd7",
"metadata": {},
"source": [
"## Make many predictions\n",
"Now we can make predictions. Note that we add a try-except because this chain can sometimes error (if SQL is written incorrectly, etc)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "24b4c66e",
"metadata": {},
"outputs": [],
"source": [
"predictions = []\n",
"predicted_dataset = []\n",
"error_dataset = []\n",
"for data in dataset:\n",
" try:\n",
" predictions.append(chain(data))\n",
" predicted_dataset.append(data)\n",
" except:\n",
" error_dataset.append(data)"
]
},
{
"cell_type": "markdown",
"id": "4783344b",
"metadata": {},
"source": [
"## Evaluate performance\n",
"Now we can evaluate the predictions. We can use a language model to score them programatically"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "d0a9341d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "1612dec1",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(\n",
" predicted_dataset, predictions, question_key=\"question\", prediction_key=\"result\"\n",
")"
]
},
{
"cell_type": "markdown",
"id": "79587806",
"metadata": {},
"source": [
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "2a689df5",
"metadata": {},
"outputs": [],
"source": [
"for i, prediction in enumerate(predictions):\n",
" prediction[\"grade\"] = graded_outputs[i][\"text\"]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "27b61215",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({' CORRECT': 3, ' INCORRECT': 4})"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"\n",
"Counter([pred[\"grade\"] for pred in predictions])"
]
},
{
"cell_type": "markdown",
"id": "12fe30f4",
"metadata": {},
"source": [
"We can also filter the datapoints to the incorrect examples and look at them."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "47c692a1",
"metadata": {},
"outputs": [],
"source": [
"incorrect = [pred for pred in predictions if pred[\"grade\"] == \" INCORRECT\"]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "0ef976c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'How many employees are also customers?',\n",
" 'answer': 'None',\n",
" 'result': ' 59 employees are also customers.',\n",
" 'grade': ' INCORRECT'}"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"incorrect[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7710401a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}