mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
94 lines
3.0 KiB
Python
94 lines
3.0 KiB
Python
from typing import List
|
|
|
|
from langchain.chains import LLMChain
|
|
from langchain.output_parsers import PydanticOutputParser
|
|
from langchain.retrievers.multi_query import MultiQueryRetriever
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain_community.chat_models import ChatOllama, ChatOpenAI
|
|
from langchain_community.document_loaders import WebBaseLoader
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
from langchain_community.vectorstores import Chroma
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
|
|
# Load
|
|
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
|
data = loader.load()
|
|
|
|
# Split
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
all_splits = text_splitter.split_documents(data)
|
|
|
|
# Add to vectorDB
|
|
vectorstore = Chroma.from_documents(
|
|
documents=all_splits,
|
|
collection_name="rag-private",
|
|
embedding=OpenAIEmbeddings(),
|
|
)
|
|
|
|
|
|
# Output parser will split the LLM result into a list of queries
|
|
class LineList(BaseModel):
|
|
# "lines" is the key (attribute name) of the parsed output
|
|
lines: List[str] = Field(description="Lines of text")
|
|
|
|
|
|
class LineListOutputParser(PydanticOutputParser):
|
|
def __init__(self) -> None:
|
|
super().__init__(pydantic_object=LineList)
|
|
|
|
def parse(self, text: str) -> LineList:
|
|
lines = text.strip().split("\n")
|
|
return LineList(lines=lines)
|
|
|
|
|
|
output_parser = LineListOutputParser()
|
|
|
|
QUERY_PROMPT = PromptTemplate(
|
|
input_variables=["question"],
|
|
template="""You are an AI language model assistant. Your task is to generate five
|
|
different versions of the given user question to retrieve relevant documents from
|
|
a vector database. By generating multiple perspectives on the user question, your
|
|
goal is to help the user overcome some of the limitations of the distance-based
|
|
similarity search. Provide these alternative questions separated by newlines.
|
|
Original question: {question}""",
|
|
)
|
|
|
|
# Add the LLM downloaded from Ollama
|
|
ollama_llm = "zephyr"
|
|
llm = ChatOllama(model=ollama_llm)
|
|
|
|
# Chain
|
|
llm_chain = LLMChain(llm=llm, prompt=QUERY_PROMPT, output_parser=output_parser)
|
|
|
|
# Run
|
|
retriever = MultiQueryRetriever(
|
|
retriever=vectorstore.as_retriever(), llm_chain=llm_chain, parser_key="lines"
|
|
) # "lines" is the key (attribute name) of the parsed output
|
|
|
|
# RAG prompt
|
|
template = """Answer the question based only on the following context:
|
|
{context}
|
|
Question: {question}
|
|
"""
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
# RAG
|
|
model = ChatOpenAI()
|
|
chain = (
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
| prompt
|
|
| model
|
|
| StrOutputParser()
|
|
)
|
|
|
|
|
|
# Add typing for input
|
|
class Question(BaseModel):
|
|
__root__: str
|
|
|
|
|
|
chain = chain.with_types(input_type=Question)
|