mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
fa5d49f2c1
ran ```bash g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g" g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g" g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g" g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g" g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g" g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g" gco master libs/langchain/tests/unit_tests/*/test_imports.py gco master libs/langchain/tests/unit_tests/**/test_public_api.py ```
60 lines
2.0 KiB
Python
60 lines
2.0 KiB
Python
import os
|
|
import uuid
|
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain_community.document_loaders import PyPDFLoader
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
|
from pymongo import MongoClient
|
|
|
|
PARENT_DOC_ID_KEY = "parent_doc_id"
|
|
|
|
|
|
def parent_child_splitter(data, id_key=PARENT_DOC_ID_KEY):
|
|
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000)
|
|
# This text splitter is used to create the child documents
|
|
# It should create documents smaller than the parent
|
|
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
|
|
documents = parent_splitter.split_documents(data)
|
|
doc_ids = [str(uuid.uuid4()) for _ in documents]
|
|
|
|
docs = []
|
|
for i, doc in enumerate(documents):
|
|
_id = doc_ids[i]
|
|
sub_docs = child_splitter.split_documents([doc])
|
|
for _doc in sub_docs:
|
|
_doc.metadata[id_key] = _id
|
|
_doc.metadata["doc_level"] = "child"
|
|
docs.extend(sub_docs)
|
|
doc.metadata[id_key] = _id
|
|
doc.metadata["doc_level"] = "parent"
|
|
return documents, docs
|
|
|
|
|
|
MONGO_URI = os.environ["MONGO_URI"]
|
|
|
|
# Note that if you change this, you also need to change it in `rag_mongo/chain.py`
|
|
DB_NAME = "langchain-test-2"
|
|
COLLECTION_NAME = "test"
|
|
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"
|
|
EMBEDDING_FIELD_NAME = "embedding"
|
|
client = MongoClient(MONGO_URI)
|
|
db = client[DB_NAME]
|
|
MONGODB_COLLECTION = db[COLLECTION_NAME]
|
|
|
|
if __name__ == "__main__":
|
|
# Load docs
|
|
loader = PyPDFLoader("https://arxiv.org/pdf/2303.08774.pdf")
|
|
data = loader.load()
|
|
|
|
# Split docs
|
|
parent_docs, child_docs = parent_child_splitter(data)
|
|
|
|
# Insert the documents in MongoDB Atlas Vector Search
|
|
_ = MongoDBAtlasVectorSearch.from_documents(
|
|
documents=parent_docs + child_docs,
|
|
embedding=OpenAIEmbeddings(disallowed_special=()),
|
|
collection=MONGODB_COLLECTION,
|
|
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
|
|
)
|