mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
dff24285ea
This PR replaces the previous `Intent` check with the new `Prompt Safety` check. The logic and steps to enable chain moderation via the Amazon Comprehend service, allowing you to detect and redact PII, Toxic, and Prompt Safety information in the LLM prompt or answer remains unchanged. This implementation updates the code and configuration types with respect to `Prompt Safety`. ### Usage sample ```python from langchain_experimental.comprehend_moderation import (BaseModerationConfig, ModerationPromptSafetyConfig, ModerationPiiConfig, ModerationToxicityConfig ) pii_config = ModerationPiiConfig( labels=["SSN"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig( threshold=0.5 ) prompt_safety_config = ModerationPromptSafetyConfig( threshold=0.5 ) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, #specify the configuration client=comprehend_client, #optionally pass the Boto3 Client verbose=True ) template = """Question: {question} Answer:""" prompt = PromptTemplate(template=template, input_variables=["question"]) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here." ] llm = FakeListLLM(responses=responses) llm_chain = LLMChain(prompt=prompt, llm=llm) chain = ( prompt | comp_moderation_with_config | {llm_chain.input_keys[0]: lambda x: x['output'] } | llm_chain | { "input": lambda x: x['text'] } | comp_moderation_with_config ) try: response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"}) except Exception as e: print(str(e)) else: print(response['output']) ``` ### Output ```python > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. > Entering new AmazonComprehendModerationChain chain... Running AmazonComprehendModerationChain... Running pii Validation... Running toxicity Validation... Running prompt safety Validation... > Finished chain. Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like XXXXXXXXXXXX John Doe's phone number is (999)253-9876. ``` --------- Co-authored-by: Jha <nikjha@amazon.com> Co-authored-by: Anjan Biswas <anjanavb@amazon.com> Co-authored-by: Anjan Biswas <84933469+anjanvb@users.noreply.github.com>
32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
from langchain_experimental.comprehend_moderation.amazon_comprehend_moderation import (
|
|
AmazonComprehendModerationChain,
|
|
)
|
|
from langchain_experimental.comprehend_moderation.base_moderation import BaseModeration
|
|
from langchain_experimental.comprehend_moderation.base_moderation_callbacks import (
|
|
BaseModerationCallbackHandler,
|
|
)
|
|
from langchain_experimental.comprehend_moderation.base_moderation_config import (
|
|
BaseModerationConfig,
|
|
ModerationPiiConfig,
|
|
ModerationPromptSafetyConfig,
|
|
ModerationToxicityConfig,
|
|
)
|
|
from langchain_experimental.comprehend_moderation.pii import ComprehendPII
|
|
from langchain_experimental.comprehend_moderation.prompt_safety import (
|
|
ComprehendPromptSafety,
|
|
)
|
|
from langchain_experimental.comprehend_moderation.toxicity import ComprehendToxicity
|
|
|
|
__all__ = [
|
|
"BaseModeration",
|
|
"ComprehendPII",
|
|
"ComprehendPromptSafety",
|
|
"ComprehendToxicity",
|
|
"BaseModerationConfig",
|
|
"ModerationPiiConfig",
|
|
"ModerationToxicityConfig",
|
|
"ModerationPromptSafetyConfig",
|
|
"BaseModerationCallbackHandler",
|
|
"AmazonComprehendModerationChain",
|
|
]
|