mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
2087cbae64
## PR title community[patch]: Invoke callback prior to yielding token ## PR message - Description: Invoke callback prior to yielding token in _stream method in chat_models/perplexity. - Issue: https://github.com/langchain-ai/langchain/issues/16913 - Dependencies: None
272 lines
10 KiB
Python
272 lines
10 KiB
Python
"""Wrapper around Perplexity APIs."""
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import (
|
|
Any,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
FunctionMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
ToolMessageChunk,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import Field, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ChatPerplexity(BaseChatModel):
|
|
"""`Perplexity AI` Chat models API.
|
|
|
|
To use, you should have the ``openai`` python package installed, and the
|
|
environment variable ``PPLX_API_KEY`` set to your API key.
|
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
|
in, even if not explicitly saved on this class.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatPerplexity
|
|
|
|
chat = ChatPerplexity(model="pplx-70b-online", temperature=0.7)
|
|
"""
|
|
|
|
client: Any #: :meta private:
|
|
model: str = "pplx-70b-online"
|
|
"""Model name."""
|
|
temperature: float = 0.7
|
|
"""What sampling temperature to use."""
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
pplx_api_key: Optional[str] = None
|
|
"""Base URL path for API requests,
|
|
leave blank if not using a proxy or service emulator."""
|
|
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
|
"""Timeout for requests to PerplexityChat completion API. Default is 600 seconds."""
|
|
max_retries: int = 6
|
|
"""Maximum number of retries to make when generating."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
max_tokens: Optional[int] = None
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"pplx_api_key": "PPLX_API_KEY"}
|
|
|
|
@root_validator(pre=True, allow_reuse=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
extra = values.get("model_kwargs", {})
|
|
for field_name in list(values):
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
if field_name not in all_required_field_names:
|
|
logger.warning(
|
|
f"""WARNING! {field_name} is not a default parameter.
|
|
{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
if invalid_model_kwargs:
|
|
raise ValueError(
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
)
|
|
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator(allow_reuse=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
values["pplx_api_key"] = get_from_dict_or_env(
|
|
values, "pplx_api_key", "PPLX_API_KEY"
|
|
)
|
|
try:
|
|
import openai # noqa: F401
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import openai python package. "
|
|
"Please install it with `pip install openai`."
|
|
)
|
|
try:
|
|
values["client"] = openai.OpenAI(
|
|
api_key=values["pplx_api_key"], base_url="https://api.perplexity.ai"
|
|
)
|
|
except AttributeError:
|
|
raise ValueError(
|
|
"`openai` has no `ChatCompletion` attribute, this is likely "
|
|
"due to an old version of the openai package. Try upgrading it "
|
|
"with `pip install --upgrade openai`."
|
|
)
|
|
return values
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
"""Get the default parameters for calling PerplexityChat API."""
|
|
return {
|
|
"request_timeout": self.request_timeout,
|
|
"max_tokens": self.max_tokens,
|
|
"stream": self.streaming,
|
|
"temperature": self.temperature,
|
|
**self.model_kwargs,
|
|
}
|
|
|
|
def _convert_message_to_dict(self, message: BaseMessage) -> Dict[str, Any]:
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
return message_dict
|
|
|
|
def _create_message_dicts(
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
params = dict(self._invocation_params)
|
|
if stop is not None:
|
|
if "stop" in params:
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
params["stop"] = stop
|
|
message_dicts = [self._convert_message_to_dict(m) for m in messages]
|
|
return message_dicts, params
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
self, _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = _dict.get("role")
|
|
content = _dict.get("content") or ""
|
|
additional_kwargs: Dict = {}
|
|
if _dict.get("function_call"):
|
|
function_call = dict(_dict["function_call"])
|
|
if "name" in function_call and function_call["name"] is None:
|
|
function_call["name"] = ""
|
|
additional_kwargs["function_call"] = function_call
|
|
if _dict.get("tool_calls"):
|
|
additional_kwargs["tool_calls"] = _dict["tool_calls"]
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
elif role == "function" or default_class == FunctionMessageChunk:
|
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
|
elif role == "tool" or default_class == ToolMessageChunk:
|
|
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role)
|
|
else:
|
|
return default_class(content=content)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
if stop:
|
|
params["stop_sequences"] = stop
|
|
stream_resp = self.client.chat.completions.create(
|
|
model=params["model"], messages=message_dicts, stream=True
|
|
)
|
|
for chunk in stream_resp:
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.dict()
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
choice = chunk["choices"][0]
|
|
chunk = self._convert_delta_to_message_chunk(
|
|
choice["delta"], default_chunk_class
|
|
)
|
|
finish_reason = choice.get("finish_reason")
|
|
generation_info = (
|
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
|
)
|
|
default_chunk_class = chunk.__class__
|
|
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
|
yield chunk
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
if stream_iter:
|
|
return generate_from_stream(stream_iter)
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
params = {**params, **kwargs}
|
|
response = self.client.chat.completions.create(
|
|
model=params["model"], messages=message_dicts
|
|
)
|
|
message = AIMessage(content=response.choices[0].message.content)
|
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
|
|
|
@property
|
|
def _invocation_params(self) -> Mapping[str, Any]:
|
|
"""Get the parameters used to invoke the model."""
|
|
pplx_creds: Dict[str, Any] = {
|
|
"api_key": self.pplx_api_key,
|
|
"api_base": "https://api.perplexity.ai",
|
|
"model": self.model,
|
|
}
|
|
return {**pplx_creds, **self._default_params}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "perplexitychat"
|