mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
45 lines
1.5 KiB
Python
45 lines
1.5 KiB
Python
"""Different methods for rendering Tools to be passed to LLMs.
|
|
|
|
Depending on the LLM you are using and the prompting strategy you are using,
|
|
you may want Tools to be rendered in a different way.
|
|
This module contains various ways to render tools.
|
|
"""
|
|
from langchain_core.tools import BaseTool
|
|
|
|
from langchain_community.utils.openai_functions import (
|
|
FunctionDescription,
|
|
ToolDescription,
|
|
convert_pydantic_to_openai_function,
|
|
)
|
|
|
|
|
|
def format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
|
|
"""Format tool into the OpenAI function API."""
|
|
if tool.args_schema:
|
|
return convert_pydantic_to_openai_function(
|
|
tool.args_schema, name=tool.name, description=tool.description
|
|
)
|
|
else:
|
|
return {
|
|
"name": tool.name,
|
|
"description": tool.description,
|
|
"parameters": {
|
|
# This is a hack to get around the fact that some tools
|
|
# do not expose an args_schema, and expect an argument
|
|
# which is a string.
|
|
# And Open AI does not support an array type for the
|
|
# parameters.
|
|
"properties": {
|
|
"__arg1": {"title": "__arg1", "type": "string"},
|
|
},
|
|
"required": ["__arg1"],
|
|
"type": "object",
|
|
},
|
|
}
|
|
|
|
|
|
def format_tool_to_openai_tool(tool: BaseTool) -> ToolDescription:
|
|
"""Format tool into the OpenAI function API."""
|
|
function = format_tool_to_openai_function(tool)
|
|
return {"type": "function", "function": function}
|