langchain/libs/community/langchain_community/llms/petals.py
Eugene Yurtsev 98779797fe
community[patch]: Use get_fields adapter for pydantic (#25191)
Change all usages of __fields__ with get_fields adapter merged into
langchain_core.

Code mod generated using the following grit pattern:

```
engine marzano(0.1)
language python


`$X.__fields__` => `get_fields($X)` where {
    add_import(source="langchain_core.utils.pydantic", name="get_fields")
}
```
2024-08-08 14:43:09 -04:00

153 lines
5.3 KiB
Python

import logging
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
from langchain_core.utils.pydantic import get_fields
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
class Petals(LLM):
"""Petals Bloom models.
To use, you should have the ``petals`` python package installed, and the
environment variable ``HUGGINGFACE_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain_community.llms import petals
petals = Petals()
"""
client: Any
"""The client to use for the API calls."""
tokenizer: Any
"""The tokenizer to use for the API calls."""
model_name: str = "bigscience/bloom-petals"
"""The model to use."""
temperature: float = 0.7
"""What sampling temperature to use"""
max_new_tokens: int = 256
"""The maximum number of new tokens to generate in the completion."""
top_p: float = 0.9
"""The cumulative probability for top-p sampling."""
top_k: Optional[int] = None
"""The number of highest probability vocabulary tokens
to keep for top-k-filtering."""
do_sample: bool = True
"""Whether or not to use sampling; use greedy decoding otherwise."""
max_length: Optional[int] = None
"""The maximum length of the sequence to be generated."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call
not explicitly specified."""
huggingface_api_key: Optional[SecretStr] = None
class Config:
extra = "forbid"
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in get_fields(cls).values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingface_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "huggingface_api_key", "HUGGINGFACE_API_KEY")
)
try:
from petals import AutoDistributedModelForCausalLM
from transformers import AutoTokenizer
model_name = values["model_name"]
values["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
values["client"] = AutoDistributedModelForCausalLM.from_pretrained(
model_name
)
values["huggingface_api_key"] = huggingface_api_key.get_secret_value()
except ImportError:
raise ImportError(
"Could not import transformers or petals python package."
"Please install with `pip install -U transformers petals`."
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Petals API."""
normal_params = {
"temperature": self.temperature,
"max_new_tokens": self.max_new_tokens,
"top_p": self.top_p,
"top_k": self.top_k,
"do_sample": self.do_sample,
"max_length": self.max_length,
}
return {**normal_params, **self.model_kwargs}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "petals"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call the Petals API."""
params = self._default_params
params = {**params, **kwargs}
inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"]
outputs = self.client.generate(inputs, **params)
text = self.tokenizer.decode(outputs[0])
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the model parameters
text = enforce_stop_tokens(text, stop)
return text