mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
4eda647fdd
Previously, if this did not find a mypy cache then it wouldnt run this makes it always run adding mypy ignore comments with existing uncaught issues to unblock other prs --------- Co-authored-by: Erick Friis <erick@langchain.dev> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
369 lines
13 KiB
Python
369 lines
13 KiB
Python
import json
|
|
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
|
|
|
|
from aiohttp import ClientSession
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
|
|
|
from langchain_community.utilities.requests import Requests
|
|
|
|
|
|
def _message_role(type: str) -> str:
|
|
role_mapping = {"ai": "assistant", "human": "user", "chat": "user"}
|
|
|
|
if type in role_mapping:
|
|
return role_mapping[type]
|
|
else:
|
|
raise ValueError(f"Unknown type: {type}")
|
|
|
|
|
|
def _format_edenai_messages(messages: List[BaseMessage]) -> Dict[str, Any]:
|
|
system = None
|
|
formatted_messages = []
|
|
text = messages[-1].content
|
|
for i, message in enumerate(messages[:-1]):
|
|
if message.type == "system":
|
|
if i != 0:
|
|
raise ValueError("System message must be at beginning of message list.")
|
|
system = message.content
|
|
else:
|
|
formatted_messages.append(
|
|
{
|
|
"role": _message_role(message.type),
|
|
"message": message.content,
|
|
}
|
|
)
|
|
return {
|
|
"text": text,
|
|
"previous_history": formatted_messages,
|
|
"chatbot_global_action": system,
|
|
}
|
|
|
|
|
|
class ChatEdenAI(BaseChatModel):
|
|
"""`EdenAI` chat large language models.
|
|
|
|
`EdenAI` is a versatile platform that allows you to access various language models
|
|
from different providers such as Google, OpenAI, Cohere, Mistral and more.
|
|
|
|
To get started, make sure you have the environment variable ``EDENAI_API_KEY``
|
|
set with your API key, or pass it as a named parameter to the constructor.
|
|
|
|
Additionally, `EdenAI` provides the flexibility to choose from a variety of models,
|
|
including the ones like "gpt-4".
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatEdenAI
|
|
from langchain_core.messages import HumanMessage
|
|
|
|
# Initialize `ChatEdenAI` with the desired configuration
|
|
chat = ChatEdenAI(
|
|
provider="openai",
|
|
model="gpt-4",
|
|
max_tokens=256,
|
|
temperature=0.75)
|
|
|
|
# Create a list of messages to interact with the model
|
|
messages = [HumanMessage(content="hello")]
|
|
|
|
# Invoke the model with the provided messages
|
|
chat.invoke(messages)
|
|
|
|
`EdenAI` goes beyond mere model invocation. It empowers you with advanced features :
|
|
|
|
- **Multiple Providers**: access to a diverse range of llms offered by various
|
|
providers giving you the freedom to choose the best-suited model for your use case.
|
|
|
|
- **Fallback Mechanism**: Set a fallback mechanism to ensure seamless operations
|
|
even if the primary provider is unavailable, you can easily switches to an
|
|
alternative provider.
|
|
|
|
- **Usage Statistics**: Track usage statistics on a per-project
|
|
and per-API key basis.
|
|
This feature allows you to monitor and manage resource consumption effectively.
|
|
|
|
- **Monitoring and Observability**: `EdenAI` provides comprehensive monitoring
|
|
and observability tools on the platform.
|
|
|
|
Example of setting up a fallback mechanism:
|
|
.. code-block:: python
|
|
|
|
# Initialize `ChatEdenAI` with a fallback provider
|
|
chat_with_fallback = ChatEdenAI(
|
|
provider="openai",
|
|
model="gpt-4",
|
|
max_tokens=256,
|
|
temperature=0.75,
|
|
fallback_provider="google")
|
|
|
|
you can find more details here : https://docs.edenai.co/reference/text_chat_create
|
|
"""
|
|
|
|
provider: str = "openai"
|
|
"""chat provider to use (eg: openai,google etc.)"""
|
|
|
|
model: Optional[str] = None
|
|
"""
|
|
model name for above provider (eg: 'gpt-4' for openai)
|
|
available models are shown on https://docs.edenai.co/ under 'available providers'
|
|
"""
|
|
|
|
max_tokens: int = 256
|
|
"""Denotes the number of tokens to predict per generation."""
|
|
|
|
temperature: Optional[float] = 0
|
|
"""A non-negative float that tunes the degree of randomness in generation."""
|
|
|
|
streaming: bool = False
|
|
"""Whether to stream the results."""
|
|
|
|
fallback_providers: Optional[str] = None
|
|
"""Providers in this will be used as fallback if the call to provider fails."""
|
|
|
|
edenai_api_url: str = "https://api.edenai.run/v2"
|
|
|
|
edenai_api_key: Optional[SecretStr] = Field(None, description="EdenAI API Token")
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key exists in environment."""
|
|
values["edenai_api_key"] = convert_to_secret_str(
|
|
get_from_dict_or_env(values, "edenai_api_key", "EDENAI_API_KEY")
|
|
)
|
|
return values
|
|
|
|
@staticmethod
|
|
def get_user_agent() -> str:
|
|
from langchain_community import __version__
|
|
|
|
return f"langchain/{__version__}"
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "edenai-chat"
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
"""Call out to EdenAI's chat endpoint."""
|
|
url = f"{self.edenai_api_url}/text/chat/stream"
|
|
headers = {
|
|
"Authorization": f"Bearer {self.edenai_api_key.get_secret_value()}", # type: ignore[union-attr]
|
|
"User-Agent": self.get_user_agent(),
|
|
}
|
|
formatted_data = _format_edenai_messages(messages=messages)
|
|
payload: Dict[str, Any] = {
|
|
"providers": self.provider,
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"fallback_providers": self.fallback_providers,
|
|
**formatted_data,
|
|
**kwargs,
|
|
}
|
|
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
|
|
if self.model is not None:
|
|
payload["settings"] = {self.provider: self.model}
|
|
|
|
request = Requests(headers=headers)
|
|
response = request.post(url=url, data=payload, stream=True)
|
|
response.raise_for_status()
|
|
|
|
for chunk_response in response.iter_lines():
|
|
chunk = json.loads(chunk_response.decode())
|
|
token = chunk["text"]
|
|
chat_generatio_chunk = ChatGenerationChunk(
|
|
message=AIMessageChunk(content=token)
|
|
)
|
|
yield chat_generatio_chunk
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(token, chunk=chat_generatio_chunk)
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
url = f"{self.edenai_api_url}/text/chat/stream"
|
|
headers = {
|
|
"Authorization": f"Bearer {self.edenai_api_key.get_secret_value()}", # type: ignore[union-attr]
|
|
"User-Agent": self.get_user_agent(),
|
|
}
|
|
formatted_data = _format_edenai_messages(messages=messages)
|
|
payload: Dict[str, Any] = {
|
|
"providers": self.provider,
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"fallback_providers": self.fallback_providers,
|
|
**formatted_data,
|
|
**kwargs,
|
|
}
|
|
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
|
|
if self.model is not None:
|
|
payload["settings"] = {self.provider: self.model}
|
|
|
|
async with ClientSession() as session:
|
|
async with session.post(url, json=payload, headers=headers) as response:
|
|
response.raise_for_status()
|
|
async for chunk_response in response.content:
|
|
chunk = json.loads(chunk_response.decode())
|
|
token = chunk["text"]
|
|
chat_generation_chunk = ChatGenerationChunk(
|
|
message=AIMessageChunk(content=token)
|
|
)
|
|
yield chat_generation_chunk
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(
|
|
token=chunk["text"], chunk=chat_generation_chunk
|
|
)
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
"""Call out to EdenAI's chat endpoint."""
|
|
if self.streaming:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
url = f"{self.edenai_api_url}/text/chat"
|
|
headers = {
|
|
"Authorization": f"Bearer {self.edenai_api_key.get_secret_value()}", # type: ignore[union-attr]
|
|
"User-Agent": self.get_user_agent(),
|
|
}
|
|
formatted_data = _format_edenai_messages(messages=messages)
|
|
payload: Dict[str, Any] = {
|
|
"providers": self.provider,
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"fallback_providers": self.fallback_providers,
|
|
**formatted_data,
|
|
**kwargs,
|
|
}
|
|
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
|
|
if self.model is not None:
|
|
payload["settings"] = {self.provider: self.model}
|
|
|
|
request = Requests(headers=headers)
|
|
response = request.post(url=url, data=payload)
|
|
|
|
response.raise_for_status()
|
|
data = response.json()
|
|
provider_response = data[self.provider]
|
|
|
|
if self.fallback_providers:
|
|
fallback_response = data.get(self.fallback_providers)
|
|
if fallback_response:
|
|
provider_response = fallback_response
|
|
|
|
if provider_response.get("status") == "fail":
|
|
err_msg = provider_response.get("error", {}).get("message")
|
|
raise Exception(err_msg)
|
|
|
|
return ChatResult(
|
|
generations=[
|
|
ChatGeneration(
|
|
message=AIMessage(content=provider_response["generated_text"])
|
|
)
|
|
],
|
|
llm_output=data,
|
|
)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
if self.streaming:
|
|
stream_iter = self._astream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
url = f"{self.edenai_api_url}/text/chat"
|
|
headers = {
|
|
"Authorization": f"Bearer {self.edenai_api_key.get_secret_value()}", # type: ignore[union-attr]
|
|
"User-Agent": self.get_user_agent(),
|
|
}
|
|
formatted_data = _format_edenai_messages(messages=messages)
|
|
payload: Dict[str, Any] = {
|
|
"providers": self.provider,
|
|
"max_tokens": self.max_tokens,
|
|
"temperature": self.temperature,
|
|
"fallback_providers": self.fallback_providers,
|
|
**formatted_data,
|
|
**kwargs,
|
|
}
|
|
|
|
payload = {k: v for k, v in payload.items() if v is not None}
|
|
|
|
if self.model is not None:
|
|
payload["settings"] = {self.provider: self.model}
|
|
|
|
async with ClientSession() as session:
|
|
async with session.post(url, json=payload, headers=headers) as response:
|
|
response.raise_for_status()
|
|
data = await response.json()
|
|
provider_response = data[self.provider]
|
|
|
|
if self.fallback_providers:
|
|
fallback_response = data.get(self.fallback_providers)
|
|
if fallback_response:
|
|
provider_response = fallback_response
|
|
|
|
if provider_response.get("status") == "fail":
|
|
err_msg = provider_response.get("error", {}).get("message")
|
|
raise Exception(err_msg)
|
|
|
|
return ChatResult(
|
|
generations=[
|
|
ChatGeneration(
|
|
message=AIMessage(
|
|
content=provider_response["generated_text"]
|
|
)
|
|
)
|
|
],
|
|
llm_output=data,
|
|
)
|