mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
f8078e41e5
## Description Semantic Cache can retrieve noisy information if the score threshold for the value is too low. Adding the ability to set a `score_threshold` on cache construction can allow for less noisy scores to appear. - [x] **Add tests and docs** 1. Added tests that confirm the `score_threshold` query is valid. - [x] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ --------- Co-authored-by: Erick Friis <erick@langchain.dev> |
||
---|---|---|
.. | ||
langchain_mongodb | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-mongodb
Installation
pip install -U langchain-mongodb
Usage
- See integrations doc for more in-depth usage instructions.
- See Getting Started with the LangChain Integration for a walkthrough on using your first LangChain implementation with MongoDB Atlas.
Using MongoDBAtlasVectorSearch
from langchain_mongodb import MongoDBAtlasVectorSearch
# Pull MongoDB Atlas URI from environment variables
MONGODB_ATLAS_CLUSTER_URI = os.environ.get("MONGODB_ATLAS_CLUSTER_URI")
DB_NAME = "langchain_db"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name"
MONGODB_COLLECTION = client[DB_NAME][COLLECITON_NAME]
# Create the vector search via `from_connection_string`
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
MONGODB_ATLAS_CLUSTER_URI,
DB_NAME + "." + COLLECTION_NAME,
OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
# Initialize MongoDB python client
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
# Create the vector search via instantiation
vector_search_2 = MongoDBAtlasVectorSearch(
collection=MONGODB_COLLECTION,
embeddings=OpenAIEmbeddings(disallowed_special=()),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)