langchain/templates/stepback-qa-prompting/stepback_qa_prompting/chain.py
2023-10-26 19:44:30 -07:00

76 lines
2.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableLambda
from langchain.utilities import DuckDuckGoSearchAPIWrapper
search = DuckDuckGoSearchAPIWrapper(max_results=4)
def retriever(query):
return search.run(query)
# Few Shot Examples
examples = [
{
"input": "Could the members of The Police perform lawful arrests?",
"output": "what can the members of The Police do?",
},
{
"input": "Jan Sindels was born in what country?",
"output": "what is Jan Sindels personal history?",
},
]
# We now transform these to example messages
example_prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
("ai", "{output}"),
]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples,
)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert at world knowledge. Your task is to step back "
"and paraphrase a question to a more generic step-back question, which "
"is easier to answer. Here are a few examples:",
),
# Few shot examples
few_shot_prompt,
# New question
("user", "{question}"),
]
)
question_gen = prompt | ChatOpenAI(temperature=0) | StrOutputParser()
response_prompt_template = """You are an expert of world knowledge. I am going to ask you a question. Your response should be comprehensive and not contradicted with the following context if they are relevant. Otherwise, ignore them if they are not relevant.
{normal_context}
{step_back_context}
Original Question: {question}
Answer:""" # noqa: E501
response_prompt = ChatPromptTemplate.from_template(response_prompt_template)
chain = (
{
# Retrieve context using the normal question
"normal_context": RunnableLambda(lambda x: x["question"]) | retriever,
# Retrieve context using the step-back question
"step_back_context": question_gen | retriever,
# Pass on the question
"question": lambda x: x["question"],
}
| response_prompt
| ChatOpenAI(temperature=0)
| StrOutputParser()
)