mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
1cbab0ebda
Description: you don't need to pass a version for Replicate official models. That was broken on LangChain until now! You can now run: ``` llm = Replicate( model="meta/meta-llama-3-8b-instruct", model_kwargs={"temperature": 0.75, "max_length": 500, "top_p": 1}, ) prompt = """ User: Answer the following yes/no question by reasoning step by step. Can a dog drive a car? Assistant: """ llm(prompt) ``` I've updated the replicate.ipynb to reflect that. twitter: @charliebholtz --------- Co-authored-by: Erick Friis <erick@langchain.dev>
232 lines
8.2 KiB
Python
232 lines
8.2 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.outputs import GenerationChunk
|
|
from langchain_core.pydantic_v1 import Extra, Field, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
if TYPE_CHECKING:
|
|
from replicate.prediction import Prediction
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class Replicate(LLM):
|
|
"""Replicate models.
|
|
|
|
To use, you should have the ``replicate`` python package installed,
|
|
and the environment variable ``REPLICATE_API_TOKEN`` set with your API token.
|
|
You can find your token here: https://replicate.com/account
|
|
|
|
The model param is required, but any other model parameters can also
|
|
be passed in with the format model_kwargs={model_param: value, ...}
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import Replicate
|
|
|
|
replicate = Replicate(
|
|
model=(
|
|
"stability-ai/stable-diffusion: "
|
|
"27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478",
|
|
),
|
|
model_kwargs={"image_dimensions": "512x512"}
|
|
)
|
|
"""
|
|
|
|
model: str
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict, alias="input")
|
|
replicate_api_token: Optional[str] = None
|
|
prompt_key: Optional[str] = None
|
|
version_obj: Any = Field(default=None, exclude=True)
|
|
"""Optionally pass in the model version object during initialization to avoid
|
|
having to make an extra API call to retrieve it during streaming. NOTE: not
|
|
serializable, is excluded from serialization.
|
|
"""
|
|
|
|
streaming: bool = False
|
|
"""Whether to stream the results."""
|
|
|
|
stop: List[str] = Field(default_factory=list)
|
|
"""Stop sequences to early-terminate generation."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic config."""
|
|
|
|
allow_population_by_field_name = True
|
|
extra = Extra.forbid
|
|
|
|
@property
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
return {"replicate_api_token": "REPLICATE_API_TOKEN"}
|
|
|
|
@classmethod
|
|
def is_lc_serializable(cls) -> bool:
|
|
return True
|
|
|
|
@classmethod
|
|
def get_lc_namespace(cls) -> List[str]:
|
|
"""Get the namespace of the langchain object."""
|
|
return ["langchain", "llms", "replicate"]
|
|
|
|
@root_validator(pre=True)
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
|
|
|
input = values.pop("input", {})
|
|
if input:
|
|
logger.warning(
|
|
"Init param `input` is deprecated, please use `model_kwargs` instead."
|
|
)
|
|
extra = {**values.pop("model_kwargs", {}), **input}
|
|
for field_name in list(values):
|
|
if field_name not in all_required_field_names:
|
|
if field_name in extra:
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
logger.warning(
|
|
f"""{field_name} was transferred to model_kwargs.
|
|
Please confirm that {field_name} is what you intended."""
|
|
)
|
|
extra[field_name] = values.pop(field_name)
|
|
values["model_kwargs"] = extra
|
|
return values
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
replicate_api_token = get_from_dict_or_env(
|
|
values, "replicate_api_token", "REPLICATE_API_TOKEN"
|
|
)
|
|
values["replicate_api_token"] = replicate_api_token
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
return {
|
|
"model": self.model,
|
|
"model_kwargs": self.model_kwargs,
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of model."""
|
|
return "replicate"
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call to replicate endpoint."""
|
|
if self.streaming:
|
|
completion: Optional[str] = None
|
|
for chunk in self._stream(
|
|
prompt, stop=stop, run_manager=run_manager, **kwargs
|
|
):
|
|
if completion is None:
|
|
completion = chunk.text
|
|
else:
|
|
completion += chunk.text
|
|
else:
|
|
prediction = self._create_prediction(prompt, **kwargs)
|
|
prediction.wait()
|
|
if prediction.status == "failed":
|
|
raise RuntimeError(prediction.error)
|
|
if isinstance(prediction.output, str):
|
|
completion = prediction.output
|
|
else:
|
|
completion = "".join(prediction.output)
|
|
assert completion is not None
|
|
stop_conditions = stop or self.stop
|
|
for s in stop_conditions:
|
|
if s in completion:
|
|
completion = completion[: completion.find(s)]
|
|
return completion
|
|
|
|
def _stream(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[GenerationChunk]:
|
|
prediction = self._create_prediction(prompt, **kwargs)
|
|
stop_conditions = stop or self.stop
|
|
stop_condition_reached = False
|
|
current_completion: str = ""
|
|
for output in prediction.output_iterator():
|
|
current_completion += output
|
|
# test for stop conditions, if specified
|
|
for s in stop_conditions:
|
|
if s in current_completion:
|
|
prediction.cancel()
|
|
stop_condition_reached = True
|
|
# Potentially some tokens that should still be yielded before ending
|
|
# stream.
|
|
stop_index = max(output.find(s), 0)
|
|
output = output[:stop_index]
|
|
if not output:
|
|
break
|
|
if output:
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(
|
|
output,
|
|
verbose=self.verbose,
|
|
)
|
|
yield GenerationChunk(text=output)
|
|
if stop_condition_reached:
|
|
break
|
|
|
|
def _create_prediction(self, prompt: str, **kwargs: Any) -> Prediction:
|
|
try:
|
|
import replicate as replicate_python
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import replicate python package. "
|
|
"Please install it with `pip install replicate`."
|
|
)
|
|
|
|
# get the model and version
|
|
if self.version_obj is None:
|
|
if ":" in self.model:
|
|
model_str, version_str = self.model.split(":")
|
|
model = replicate_python.models.get(model_str)
|
|
self.version_obj = model.versions.get(version_str)
|
|
else:
|
|
model = replicate_python.models.get(self.model)
|
|
self.version_obj = model.latest_version
|
|
|
|
if self.prompt_key is None:
|
|
# sort through the openapi schema to get the name of the first input
|
|
input_properties = sorted(
|
|
self.version_obj.openapi_schema["components"]["schemas"]["Input"][
|
|
"properties"
|
|
].items(),
|
|
key=lambda item: item[1].get("x-order", 0),
|
|
)
|
|
|
|
self.prompt_key = input_properties[0][0]
|
|
|
|
input_: Dict = {
|
|
self.prompt_key: prompt,
|
|
**self.model_kwargs,
|
|
**kwargs,
|
|
}
|
|
|
|
# if it's an official model
|
|
if ":" not in self.model:
|
|
return replicate_python.models.predictions.create(self.model, input=input_)
|
|
else:
|
|
return replicate_python.predictions.create(
|
|
version=self.version_obj, input=input_
|
|
)
|