mirror of
https://github.com/hwchase17/langchain
synced 2024-11-16 06:13:16 +00:00
481d3855dc
- `llm(prompt)` -> `llm.invoke(prompt)` - `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`) - `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt, config={"callbacks": callbacks})` - `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
189 lines
6.0 KiB
Python
189 lines
6.0 KiB
Python
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import requests
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.pydantic_v1 import Extra, root_validator
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
INSTRUCTION_KEY = "### Instruction:"
|
|
RESPONSE_KEY = "### Response:"
|
|
INTRO_BLURB = (
|
|
"Below is an instruction that describes a task. "
|
|
"Write a response that appropriately completes the request."
|
|
)
|
|
PROMPT_FOR_GENERATION_FORMAT = """{intro}
|
|
{instruction_key}
|
|
{instruction}
|
|
{response_key}
|
|
""".format(
|
|
intro=INTRO_BLURB,
|
|
instruction_key=INSTRUCTION_KEY,
|
|
instruction="{instruction}",
|
|
response_key=RESPONSE_KEY,
|
|
)
|
|
|
|
|
|
class MosaicML(LLM):
|
|
"""MosaicML LLM service.
|
|
|
|
To use, you should have the
|
|
environment variable ``MOSAICML_API_TOKEN`` set with your API token, or pass
|
|
it as a named parameter to the constructor.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.llms import MosaicML
|
|
endpoint_url = (
|
|
"https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict"
|
|
)
|
|
mosaic_llm = MosaicML(
|
|
endpoint_url=endpoint_url,
|
|
mosaicml_api_token="my-api-key"
|
|
)
|
|
"""
|
|
|
|
endpoint_url: str = (
|
|
"https://models.hosted-on.mosaicml.hosting/mpt-7b-instruct/v1/predict"
|
|
)
|
|
"""Endpoint URL to use."""
|
|
inject_instruction_format: bool = False
|
|
"""Whether to inject the instruction format into the prompt."""
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
retry_sleep: float = 1.0
|
|
"""How long to try sleeping for if a rate limit is encountered"""
|
|
|
|
mosaicml_api_token: Optional[str] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that api key and python package exists in environment."""
|
|
mosaicml_api_token = get_from_dict_or_env(
|
|
values, "mosaicml_api_token", "MOSAICML_API_TOKEN"
|
|
)
|
|
values["mosaicml_api_token"] = mosaicml_api_token
|
|
return values
|
|
|
|
@property
|
|
def _identifying_params(self) -> Mapping[str, Any]:
|
|
"""Get the identifying parameters."""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
return {
|
|
**{"endpoint_url": self.endpoint_url},
|
|
**{"model_kwargs": _model_kwargs},
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of llm."""
|
|
return "mosaic"
|
|
|
|
def _transform_prompt(self, prompt: str) -> str:
|
|
"""Transform prompt."""
|
|
if self.inject_instruction_format:
|
|
prompt = PROMPT_FOR_GENERATION_FORMAT.format(
|
|
instruction=prompt,
|
|
)
|
|
return prompt
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
is_retry: bool = False,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to a MosaicML LLM inference endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = mosaic_llm.invoke("Tell me a joke.")
|
|
"""
|
|
_model_kwargs = self.model_kwargs or {}
|
|
|
|
prompt = self._transform_prompt(prompt)
|
|
|
|
payload = {"inputs": [prompt]}
|
|
payload.update(_model_kwargs)
|
|
payload.update(kwargs)
|
|
|
|
# HTTP headers for authorization
|
|
headers = {
|
|
"Authorization": f"{self.mosaicml_api_token}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
# send request
|
|
try:
|
|
response = requests.post(self.endpoint_url, headers=headers, json=payload)
|
|
except requests.exceptions.RequestException as e:
|
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
|
|
|
try:
|
|
if response.status_code == 429:
|
|
if not is_retry:
|
|
import time
|
|
|
|
time.sleep(self.retry_sleep)
|
|
|
|
return self._call(prompt, stop, run_manager, is_retry=True)
|
|
|
|
raise ValueError(
|
|
f"Error raised by inference API: rate limit exceeded.\nResponse: "
|
|
f"{response.text}"
|
|
)
|
|
|
|
parsed_response = response.json()
|
|
|
|
# The inference API has changed a couple of times, so we add some handling
|
|
# to be robust to multiple response formats.
|
|
if isinstance(parsed_response, dict):
|
|
output_keys = ["data", "output", "outputs"]
|
|
for key in output_keys:
|
|
if key in parsed_response:
|
|
output_item = parsed_response[key]
|
|
break
|
|
else:
|
|
raise ValueError(
|
|
f"No valid key ({', '.join(output_keys)}) in response:"
|
|
f" {parsed_response}"
|
|
)
|
|
if isinstance(output_item, list):
|
|
text = output_item[0]
|
|
else:
|
|
text = output_item
|
|
else:
|
|
raise ValueError(f"Unexpected response type: {parsed_response}")
|
|
|
|
# Older versions of the API include the input in the output response
|
|
if text.startswith(prompt):
|
|
text = text[len(prompt) :]
|
|
|
|
except requests.exceptions.JSONDecodeError as e:
|
|
raise ValueError(
|
|
f"Error raised by inference API: {e}.\nResponse: {response.text}"
|
|
)
|
|
|
|
# TODO: replace when MosaicML supports custom stop tokens natively
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
return text
|