mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
c010ec8b71
- `.get_relevant_documents(query)` -> `.invoke(query)` - `.get_relevant_documents(query=query)` -> `.invoke(query)` - `.get_relevant_documents(query, callbacks=callbacks)` -> `.invoke(query, config={"callbacks": callbacks})` - `.get_relevant_documents(query, **kwargs)` -> `.invoke(query, **kwargs)` --------- Co-authored-by: Erick Friis <erick@langchain.dev>
480 lines
15 KiB
Python
480 lines
15 KiB
Python
import re
|
|
from abc import ABC, abstractmethod
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
List,
|
|
Literal,
|
|
Optional,
|
|
Sequence,
|
|
Union,
|
|
)
|
|
|
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
|
from langchain_core.documents import Document
|
|
from langchain_core.pydantic_v1 import (
|
|
BaseModel,
|
|
Extra,
|
|
Field,
|
|
root_validator,
|
|
validator,
|
|
)
|
|
from langchain_core.retrievers import BaseRetriever
|
|
from typing_extensions import Annotated
|
|
|
|
|
|
def clean_excerpt(excerpt: str) -> str:
|
|
"""Clean an excerpt from Kendra.
|
|
|
|
Args:
|
|
excerpt: The excerpt to clean.
|
|
|
|
Returns:
|
|
The cleaned excerpt.
|
|
|
|
"""
|
|
if not excerpt:
|
|
return excerpt
|
|
res = re.sub(r"\s+", " ", excerpt).replace("...", "")
|
|
return res
|
|
|
|
|
|
def combined_text(item: "ResultItem") -> str:
|
|
"""Combine a ResultItem title and excerpt into a single string.
|
|
|
|
Args:
|
|
item: the ResultItem of a Kendra search.
|
|
|
|
Returns:
|
|
A combined text of the title and excerpt of the given item.
|
|
|
|
"""
|
|
text = ""
|
|
title = item.get_title()
|
|
if title:
|
|
text += f"Document Title: {title}\n"
|
|
excerpt = clean_excerpt(item.get_excerpt())
|
|
if excerpt:
|
|
text += f"Document Excerpt: \n{excerpt}\n"
|
|
return text
|
|
|
|
|
|
DocumentAttributeValueType = Union[str, int, List[str], None]
|
|
"""Possible types of a DocumentAttributeValue.
|
|
|
|
Dates are also represented as str.
|
|
"""
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class Highlight(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""Information that highlights the keywords in the excerpt."""
|
|
|
|
BeginOffset: int
|
|
"""The zero-based location in the excerpt where the highlight starts."""
|
|
EndOffset: int
|
|
"""The zero-based location in the excerpt where the highlight ends."""
|
|
TopAnswer: Optional[bool]
|
|
"""Indicates whether the result is the best one."""
|
|
Type: Optional[str]
|
|
"""The highlight type: STANDARD or THESAURUS_SYNONYM."""
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class TextWithHighLights(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""Text with highlights."""
|
|
|
|
Text: str
|
|
"""The text."""
|
|
Highlights: Optional[Any]
|
|
"""The highlights."""
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class AdditionalResultAttributeValue( # type: ignore[call-arg]
|
|
BaseModel, extra=Extra.allow
|
|
):
|
|
"""Value of an additional result attribute."""
|
|
|
|
TextWithHighlightsValue: TextWithHighLights
|
|
"""The text with highlights value."""
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class AdditionalResultAttribute(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""Additional result attribute."""
|
|
|
|
Key: str
|
|
"""The key of the attribute."""
|
|
ValueType: Literal["TEXT_WITH_HIGHLIGHTS_VALUE"]
|
|
"""The type of the value."""
|
|
Value: AdditionalResultAttributeValue
|
|
"""The value of the attribute."""
|
|
|
|
def get_value_text(self) -> str:
|
|
return self.Value.TextWithHighlightsValue.Text
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class DocumentAttributeValue(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""Value of a document attribute."""
|
|
|
|
DateValue: Optional[str]
|
|
"""The date expressed as an ISO 8601 string."""
|
|
LongValue: Optional[int]
|
|
"""The long value."""
|
|
StringListValue: Optional[List[str]]
|
|
"""The string list value."""
|
|
StringValue: Optional[str]
|
|
"""The string value."""
|
|
|
|
@property
|
|
def value(self) -> DocumentAttributeValueType:
|
|
"""The only defined document attribute value or None.
|
|
According to Amazon Kendra, you can only provide one
|
|
value for a document attribute.
|
|
"""
|
|
if self.DateValue:
|
|
return self.DateValue
|
|
if self.LongValue:
|
|
return self.LongValue
|
|
if self.StringListValue:
|
|
return self.StringListValue
|
|
if self.StringValue:
|
|
return self.StringValue
|
|
|
|
return None
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class DocumentAttribute(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""Document attribute."""
|
|
|
|
Key: str
|
|
"""The key of the attribute."""
|
|
Value: DocumentAttributeValue
|
|
"""The value of the attribute."""
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class ResultItem(BaseModel, ABC, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""Base class of a result item."""
|
|
|
|
Id: Optional[str]
|
|
"""The ID of the relevant result item."""
|
|
DocumentId: Optional[str]
|
|
"""The document ID."""
|
|
DocumentURI: Optional[str]
|
|
"""The document URI."""
|
|
DocumentAttributes: Optional[List[DocumentAttribute]] = []
|
|
"""The document attributes."""
|
|
ScoreAttributes: Optional[dict]
|
|
"""The kendra score confidence"""
|
|
|
|
@abstractmethod
|
|
def get_title(self) -> str:
|
|
"""Document title."""
|
|
|
|
@abstractmethod
|
|
def get_excerpt(self) -> str:
|
|
"""Document excerpt or passage original content as retrieved by Kendra."""
|
|
|
|
def get_additional_metadata(self) -> dict:
|
|
"""Document additional metadata dict.
|
|
This returns any extra metadata except these:
|
|
* result_id
|
|
* document_id
|
|
* source
|
|
* title
|
|
* excerpt
|
|
* document_attributes
|
|
"""
|
|
return {}
|
|
|
|
def get_document_attributes_dict(self) -> Dict[str, DocumentAttributeValueType]:
|
|
"""Document attributes dict."""
|
|
return {attr.Key: attr.Value.value for attr in (self.DocumentAttributes or [])}
|
|
|
|
def get_score_attribute(self) -> str:
|
|
"""Document Score Confidence"""
|
|
if self.ScoreAttributes is not None:
|
|
return self.ScoreAttributes["ScoreConfidence"]
|
|
else:
|
|
return "NOT_AVAILABLE"
|
|
|
|
def to_doc(
|
|
self, page_content_formatter: Callable[["ResultItem"], str] = combined_text
|
|
) -> Document:
|
|
"""Converts this item to a Document."""
|
|
page_content = page_content_formatter(self)
|
|
metadata = self.get_additional_metadata()
|
|
metadata.update(
|
|
{
|
|
"result_id": self.Id,
|
|
"document_id": self.DocumentId,
|
|
"source": self.DocumentURI,
|
|
"title": self.get_title(),
|
|
"excerpt": self.get_excerpt(),
|
|
"document_attributes": self.get_document_attributes_dict(),
|
|
"score": self.get_score_attribute(),
|
|
}
|
|
)
|
|
return Document(page_content=page_content, metadata=metadata)
|
|
|
|
|
|
class QueryResultItem(ResultItem):
|
|
"""Query API result item."""
|
|
|
|
DocumentTitle: TextWithHighLights
|
|
"""The document title."""
|
|
FeedbackToken: Optional[str]
|
|
"""Identifies a particular result from a particular query."""
|
|
Format: Optional[str]
|
|
"""
|
|
If the Type is ANSWER, then format is either:
|
|
* TABLE: a table excerpt is returned in TableExcerpt;
|
|
* TEXT: a text excerpt is returned in DocumentExcerpt.
|
|
"""
|
|
Type: Optional[str]
|
|
"""Type of result: DOCUMENT or QUESTION_ANSWER or ANSWER"""
|
|
AdditionalAttributes: Optional[List[AdditionalResultAttribute]] = []
|
|
"""One or more additional attributes associated with the result."""
|
|
DocumentExcerpt: Optional[TextWithHighLights]
|
|
"""Excerpt of the document text."""
|
|
|
|
def get_title(self) -> str:
|
|
return self.DocumentTitle.Text
|
|
|
|
def get_attribute_value(self) -> str:
|
|
if not self.AdditionalAttributes:
|
|
return ""
|
|
if not self.AdditionalAttributes[0]:
|
|
return ""
|
|
else:
|
|
return self.AdditionalAttributes[0].get_value_text()
|
|
|
|
def get_excerpt(self) -> str:
|
|
if (
|
|
self.AdditionalAttributes
|
|
and self.AdditionalAttributes[0].Key == "AnswerText"
|
|
):
|
|
excerpt = self.get_attribute_value()
|
|
elif self.DocumentExcerpt:
|
|
excerpt = self.DocumentExcerpt.Text
|
|
else:
|
|
excerpt = ""
|
|
|
|
return excerpt
|
|
|
|
def get_additional_metadata(self) -> dict:
|
|
additional_metadata = {"type": self.Type}
|
|
return additional_metadata
|
|
|
|
|
|
class RetrieveResultItem(ResultItem):
|
|
"""Retrieve API result item."""
|
|
|
|
DocumentTitle: Optional[str]
|
|
"""The document title."""
|
|
Content: Optional[str]
|
|
"""The content of the item."""
|
|
|
|
def get_title(self) -> str:
|
|
return self.DocumentTitle or ""
|
|
|
|
def get_excerpt(self) -> str:
|
|
return self.Content or ""
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class QueryResult(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""`Amazon Kendra Query API` search result.
|
|
|
|
It is composed of:
|
|
* Relevant suggested answers: either a text excerpt or table excerpt.
|
|
* Matching FAQs or questions-answer from your FAQ file.
|
|
* Documents including an excerpt of each document with its title.
|
|
"""
|
|
|
|
ResultItems: List[QueryResultItem]
|
|
"""The result items."""
|
|
|
|
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object"
|
|
class RetrieveResult(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""`Amazon Kendra Retrieve API` search result.
|
|
|
|
It is composed of:
|
|
* relevant passages or text excerpts given an input query.
|
|
"""
|
|
|
|
QueryId: str
|
|
"""The ID of the query."""
|
|
ResultItems: List[RetrieveResultItem]
|
|
"""The result items."""
|
|
|
|
|
|
KENDRA_CONFIDENCE_MAPPING = {
|
|
"NOT_AVAILABLE": 0.0,
|
|
"LOW": 0.25,
|
|
"MEDIUM": 0.50,
|
|
"HIGH": 0.75,
|
|
"VERY_HIGH": 1.0,
|
|
}
|
|
|
|
|
|
class AmazonKendraRetriever(BaseRetriever):
|
|
"""`Amazon Kendra Index` retriever.
|
|
|
|
Args:
|
|
index_id: Kendra index id
|
|
|
|
region_name: The aws region e.g., `us-west-2`.
|
|
Fallsback to AWS_DEFAULT_REGION env variable
|
|
or region specified in ~/.aws/config.
|
|
|
|
credentials_profile_name: The name of the profile in the ~/.aws/credentials
|
|
or ~/.aws/config files, which has either access keys or role information
|
|
specified. If not specified, the default credential profile or, if on an
|
|
EC2 instance, credentials from IMDS will be used.
|
|
|
|
top_k: No of results to return
|
|
|
|
attribute_filter: Additional filtering of results based on metadata
|
|
See: https://docs.aws.amazon.com/kendra/latest/APIReference
|
|
|
|
page_content_formatter: generates the Document page_content
|
|
allowing access to all result item attributes. By default, it uses
|
|
the item's title and excerpt.
|
|
|
|
client: boto3 client for Kendra
|
|
|
|
user_context: Provides information about the user context
|
|
See: https://docs.aws.amazon.com/kendra/latest/APIReference
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
retriever = AmazonKendraRetriever(
|
|
index_id="c0806df7-e76b-4bce-9b5c-d5582f6b1a03"
|
|
)
|
|
|
|
"""
|
|
|
|
index_id: str
|
|
region_name: Optional[str] = None
|
|
credentials_profile_name: Optional[str] = None
|
|
top_k: int = 3
|
|
attribute_filter: Optional[Dict] = None
|
|
page_content_formatter: Callable[[ResultItem], str] = combined_text
|
|
client: Any
|
|
user_context: Optional[Dict] = None
|
|
min_score_confidence: Annotated[Optional[float], Field(ge=0.0, le=1.0)]
|
|
|
|
@validator("top_k")
|
|
def validate_top_k(cls, value: int) -> int:
|
|
if value < 0:
|
|
raise ValueError(f"top_k ({value}) cannot be negative.")
|
|
return value
|
|
|
|
@root_validator(pre=True)
|
|
def create_client(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
if values.get("client") is not None:
|
|
return values
|
|
|
|
try:
|
|
import boto3
|
|
|
|
if values.get("credentials_profile_name"):
|
|
session = boto3.Session(profile_name=values["credentials_profile_name"])
|
|
else:
|
|
# use default credentials
|
|
session = boto3.Session()
|
|
|
|
client_params = {}
|
|
if values.get("region_name"):
|
|
client_params["region_name"] = values["region_name"]
|
|
|
|
values["client"] = session.client("kendra", **client_params)
|
|
|
|
return values
|
|
except ImportError:
|
|
raise ModuleNotFoundError(
|
|
"Could not import boto3 python package. "
|
|
"Please install it with `pip install boto3`."
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not load credentials to authenticate with AWS client. "
|
|
"Please check that credentials in the specified "
|
|
"profile name are valid."
|
|
) from e
|
|
|
|
def _kendra_query(self, query: str) -> Sequence[ResultItem]:
|
|
kendra_kwargs = {
|
|
"IndexId": self.index_id,
|
|
# truncate the query to ensure that
|
|
# there is no validation exception from Kendra.
|
|
"QueryText": query.strip()[0:999],
|
|
"PageSize": self.top_k,
|
|
}
|
|
if self.attribute_filter is not None:
|
|
kendra_kwargs["AttributeFilter"] = self.attribute_filter
|
|
if self.user_context is not None:
|
|
kendra_kwargs["UserContext"] = self.user_context
|
|
|
|
response = self.client.retrieve(**kendra_kwargs)
|
|
r_result = RetrieveResult.parse_obj(response)
|
|
if r_result.ResultItems:
|
|
return r_result.ResultItems
|
|
|
|
# Retrieve API returned 0 results, fall back to Query API
|
|
response = self.client.query(**kendra_kwargs)
|
|
q_result = QueryResult.parse_obj(response)
|
|
return q_result.ResultItems
|
|
|
|
def _get_top_k_docs(self, result_items: Sequence[ResultItem]) -> List[Document]:
|
|
top_docs = [
|
|
item.to_doc(self.page_content_formatter)
|
|
for item in result_items[: self.top_k]
|
|
]
|
|
return top_docs
|
|
|
|
def _filter_by_score_confidence(self, docs: List[Document]) -> List[Document]:
|
|
"""
|
|
Filter out the records that have a score confidence
|
|
greater than the required threshold.
|
|
"""
|
|
if not self.min_score_confidence:
|
|
return docs
|
|
filtered_docs = [
|
|
item
|
|
for item in docs
|
|
if (
|
|
item.metadata.get("score") is not None
|
|
and isinstance(item.metadata["score"], str)
|
|
and KENDRA_CONFIDENCE_MAPPING.get(item.metadata["score"], 0.0)
|
|
>= self.min_score_confidence
|
|
)
|
|
]
|
|
return filtered_docs
|
|
|
|
def _get_relevant_documents(
|
|
self,
|
|
query: str,
|
|
*,
|
|
run_manager: CallbackManagerForRetrieverRun,
|
|
) -> List[Document]:
|
|
"""Run search on Kendra index and get top k documents
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
docs = retriever.invoke('This is my query')
|
|
|
|
"""
|
|
result_items = self._kendra_query(query)
|
|
top_k_docs = self._get_top_k_docs(result_items)
|
|
return self._filter_by_score_confidence(top_k_docs)
|