langchain/docs/extras/integrations/tools/eleven_labs_tts.ipynb
2023-09-16 17:22:48 -07:00

227 lines
5.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "a991a6f8-1897-4f49-a191-ae3bdaeda856",
"metadata": {},
"source": [
"# Eleven Labs Text2Speech\n",
"\n",
"This notebook shows how to interact with the `ElevenLabs API` to achieve text-to-speech capabilities."
]
},
{
"cell_type": "markdown",
"id": "9eeb311e-e1bd-4959-8536-4d267f302eb3",
"metadata": {},
"source": [
"First, you need to set up an ElevenLabs account. You can follow the instructions [here](https://docs.elevenlabs.io/welcome/introduction)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0a309c0e-5310-4eaa-8af9-bcbc252e45da",
"metadata": {},
"outputs": [],
"source": [
"# !pip install elevenlabs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f097c3b1-f761-43cb-aad0-8ba2e93e5f5f",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"ELEVEN_API_KEY\"] = \"\""
]
},
{
"cell_type": "markdown",
"id": "434b2454-2bff-484d-822c-4026a9dc1383",
"metadata": {},
"source": [
"## Usage"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2f57a647-9214-4562-a8cf-f263a15d1f40",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'eleven_labs_text2speech'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.tools import ElevenLabsText2SpeechTool\n",
"\n",
"text_to_speak = \"Hello world! I am the real slim shady\"\n",
"\n",
"tts = ElevenLabsText2SpeechTool()\n",
"tts.name"
]
},
{
"cell_type": "markdown",
"id": "d4613fed-66f0-47c6-be50-7e7670654427",
"metadata": {},
"source": [
"We can generate audio, save it to the temporary file and then play it."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f1984844-aa75-4f83-9d42-1c8052d87cc0",
"metadata": {},
"outputs": [],
"source": [
"speech_file = tts.run(text_to_speak)\n",
"tts.play(speech_file)"
]
},
{
"cell_type": "markdown",
"id": "42d89cd4-ac2a-4857-9787-c9018b4a8782",
"metadata": {},
"source": [
"Or stream audio directly."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d72822f8-3223-47e2-8d2e-6ff46b8c8645",
"metadata": {},
"outputs": [],
"source": [
"tts.stream_speech(text_to_speak)"
]
},
{
"cell_type": "markdown",
"id": "a152766d-5f06-48b1-ac89-b4e8d88d3c9f",
"metadata": {},
"source": [
"## Use within an Agent"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "37626aea-0cf0-4849-9c00-c0f40515ffe0",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.agents import initialize_agent, AgentType, load_tools"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "c168f28e-d5b7-4c93-bed8-0ab317b4a44b",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"tools = load_tools([\"eleven_labs_text2speech\"])\n",
"agent = initialize_agent(\n",
" tools=tools,\n",
" llm=llm,\n",
" agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,\n",
" verbose=True,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "336bf95a-3ccb-4963-aac3-638a4df2ed78",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction:\n",
"```\n",
"{\n",
" \"action\": \"eleven_labs_text2speech\",\n",
" \"action_input\": {\n",
" \"query\": \"Why did the chicken cross the playground? To get to the other slide!\"\n",
" }\n",
"}\n",
"```\n",
"\n",
"\u001b[0m\n",
"Observation: \u001b[36;1m\u001b[1;3m/tmp/tmpsfg783f1.wav\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3m I have the audio file ready to be sent to the human\n",
"Action:\n",
"```\n",
"{\n",
" \"action\": \"Final Answer\",\n",
" \"action_input\": \"/tmp/tmpsfg783f1.wav\"\n",
"}\n",
"```\n",
"\n",
"\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
}
],
"source": [
"audio_file = agent.run(\"Tell me a joke and read it out for me.\")"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "f0aa7aa9-4682-4599-8cae-59347d9e5210",
"metadata": {},
"outputs": [],
"source": [
"tts.play(audio_file)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}