langchain/libs/community/langchain_community/llms/anyscale.py
Bagatur ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00

280 lines
10 KiB
Python

"""Wrapper around Anyscale Endpoint"""
from typing import (
Any,
AsyncIterator,
Dict,
Iterator,
List,
Mapping,
Optional,
Set,
Tuple,
cast,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_community.llms.openai import (
BaseOpenAI,
acompletion_with_retry,
completion_with_retry,
)
def update_token_usage(
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
) -> None:
"""Update token usage."""
_keys_to_use = keys.intersection(response["usage"])
for _key in _keys_to_use:
if _key not in token_usage:
token_usage[_key] = response["usage"][_key]
else:
token_usage[_key] += response["usage"][_key]
def create_llm_result(
choices: Any, prompts: List[str], token_usage: Dict[str, int], model_name: str
) -> LLMResult:
"""Create the LLMResult from the choices and prompts."""
generations = []
for i, _ in enumerate(prompts):
choice = choices[i]
generations.append(
[
Generation(
text=choice["message"]["content"],
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
]
)
llm_output = {"token_usage": token_usage, "model_name": model_name}
return LLMResult(generations=generations, llm_output=llm_output)
class Anyscale(BaseOpenAI):
"""Anyscale large language models.
To use, you should have the environment variable ``ANYSCALE_API_BASE`` and
``ANYSCALE_API_KEY``set with your Anyscale Endpoint, or pass it as a named
parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.llms import Anyscale
anyscalellm = Anyscale(anyscale_api_base="ANYSCALE_API_BASE",
anyscale_api_key="ANYSCALE_API_KEY",
model_name="meta-llama/Llama-2-7b-chat-hf")
# To leverage Ray for parallel processing
@ray.remote(num_cpus=1)
def send_query(llm, text):
resp = llm(text)
return resp
futures = [send_query.remote(anyscalellm, text) for text in texts]
results = ray.get(futures)
"""
"""Key word arguments to pass to the model."""
anyscale_api_base: Optional[str] = None
anyscale_api_key: Optional[SecretStr] = None
prefix_messages: List = Field(default_factory=list)
@classmethod
def is_lc_serializable(cls) -> bool:
return False
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["anyscale_api_base"] = get_from_dict_or_env(
values, "anyscale_api_base", "ANYSCALE_API_BASE"
)
values["anyscale_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "anyscale_api_key", "ANYSCALE_API_KEY")
)
try:
import openai
## Always create ChatComplete client, replacing the legacy Complete client
values["client"] = openai.ChatCompletion
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
if values["streaming"] and values["n"] > 1:
raise ValueError("Cannot stream results when n > 1.")
if values["streaming"] and values["best_of"] > 1:
raise ValueError("Cannot stream results when best_of > 1.")
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_name": self.model_name},
**super()._identifying_params,
}
@property
def _invocation_params(self) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
openai_creds: Dict[str, Any] = {
"api_key": cast(SecretStr, self.anyscale_api_key).get_secret_value(),
"api_base": self.anyscale_api_base,
}
return {**openai_creds, **{"model": self.model_name}, **super()._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "Anyscale LLM"
def _get_chat_messages(
self, prompts: List[str], stop: Optional[List[str]] = None
) -> Tuple:
if len(prompts) > 1:
raise ValueError(
f"Anyscale currently only supports single prompt, got {prompts}"
)
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
params: Dict[str, Any] = self._invocation_params
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params.get("max_tokens") == -1:
# for Chat api, omitting max_tokens is equivalent to having no limit
del params["max_tokens"]
return messages, params
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
messages, params = self._get_chat_messages([prompt], stop)
params = {**params, **kwargs, "stream": True}
for stream_resp in completion_with_retry(
self, messages=messages, run_manager=run_manager, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
chunk = GenerationChunk(text=token)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
messages, params = self._get_chat_messages([prompt], stop)
params = {**params, **kwargs, "stream": True}
async for stream_resp in await acompletion_with_retry(
self, messages=messages, run_manager=run_manager, **params
):
token = stream_resp["choices"][0]["delta"].get("content", "")
chunk = GenerationChunk(text=token)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(token, chunk=chunk)
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
choices = []
token_usage: Dict[str, int] = {}
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
for prompt in prompts:
if self.streaming:
generation: Optional[GenerationChunk] = None
for chunk in self._stream(prompt, stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
choices.append(
{
"message": {"content": generation.text},
"finish_reason": generation.generation_info.get("finish_reason")
if generation.generation_info
else None,
"logprobs": generation.generation_info.get("logprobs")
if generation.generation_info
else None,
}
)
else:
messages, params = self._get_chat_messages([prompt], stop)
params = {**params, **kwargs}
response = completion_with_retry(
self, messages=messages, run_manager=run_manager, **params
)
choices.extend(response["choices"])
update_token_usage(_keys, response, token_usage)
return create_llm_result(choices, prompts, token_usage, self.model_name)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
choices = []
token_usage: Dict[str, int] = {}
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
for prompt in prompts:
messages = self.prefix_messages + [{"role": "user", "content": prompt}]
if self.streaming:
generation: Optional[GenerationChunk] = None
async for chunk in self._astream(prompt, stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
choices.append(
{
"message": {"content": generation.text},
"finish_reason": generation.generation_info.get("finish_reason")
if generation.generation_info
else None,
"logprobs": generation.generation_info.get("logprobs")
if generation.generation_info
else None,
}
)
else:
messages, params = self._get_chat_messages([prompt], stop)
params = {**params, **kwargs}
response = await acompletion_with_retry(
self, messages=messages, run_manager=run_manager, **params
)
choices.extend(response["choices"])
update_token_usage(_keys, response, token_usage)
return create_llm_result(choices, prompts, token_usage, self.model_name)