mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
389 lines
15 KiB
Python
389 lines
15 KiB
Python
"""Module contains a PDF parser based on Document AI from Google Cloud.
|
|
|
|
You need to install two libraries to use this parser:
|
|
pip install google-cloud-documentai
|
|
pip install google-cloud-documentai-toolbox
|
|
"""
|
|
import logging
|
|
import re
|
|
import time
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Iterator, List, Optional, Sequence
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.utils.iter import batch_iterate
|
|
|
|
from langchain_community.document_loaders.base import BaseBlobParser
|
|
from langchain_community.document_loaders.blob_loaders import Blob
|
|
from langchain_community.utilities.vertexai import get_client_info
|
|
|
|
if TYPE_CHECKING:
|
|
from google.api_core.operation import Operation
|
|
from google.cloud.documentai import DocumentProcessorServiceClient
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class DocAIParsingResults:
|
|
"""A dataclass to store Document AI parsing results."""
|
|
|
|
source_path: str
|
|
parsed_path: str
|
|
|
|
|
|
class DocAIParser(BaseBlobParser):
|
|
"""`Google Cloud Document AI` parser.
|
|
|
|
For a detailed explanation of Document AI, refer to the product documentation.
|
|
https://cloud.google.com/document-ai/docs/overview
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
client: Optional["DocumentProcessorServiceClient"] = None,
|
|
location: Optional[str] = None,
|
|
gcs_output_path: Optional[str] = None,
|
|
processor_name: Optional[str] = None,
|
|
):
|
|
"""Initializes the parser.
|
|
|
|
Args:
|
|
client: a DocumentProcessorServiceClient to use
|
|
location: a Google Cloud location where a Document AI processor is located
|
|
gcs_output_path: a path on Google Cloud Storage to store parsing results
|
|
processor_name: full resource name of a Document AI processor or processor
|
|
version
|
|
|
|
You should provide either a client or location (and then a client
|
|
would be instantiated).
|
|
"""
|
|
|
|
if bool(client) == bool(location):
|
|
raise ValueError(
|
|
"You must specify either a client or a location to instantiate "
|
|
"a client."
|
|
)
|
|
|
|
pattern = r"projects\/[0-9]+\/locations\/[a-z\-0-9]+\/processors\/[a-z0-9]+"
|
|
if processor_name and not re.fullmatch(pattern, processor_name):
|
|
raise ValueError(
|
|
f"Processor name {processor_name} has the wrong format. If your "
|
|
"prediction endpoint looks like https://us-documentai.googleapis.com"
|
|
"/v1/projects/PROJECT_ID/locations/us/processors/PROCESSOR_ID:process,"
|
|
" use only projects/PROJECT_ID/locations/us/processors/PROCESSOR_ID "
|
|
"part."
|
|
)
|
|
|
|
self._gcs_output_path = gcs_output_path
|
|
self._processor_name = processor_name
|
|
if client:
|
|
self._client = client
|
|
else:
|
|
try:
|
|
from google.api_core.client_options import ClientOptions
|
|
from google.cloud.documentai import DocumentProcessorServiceClient
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"documentai package not found, please install it with"
|
|
" `pip install google-cloud-documentai`"
|
|
) from exc
|
|
options = ClientOptions(
|
|
api_endpoint=f"{location}-documentai.googleapis.com"
|
|
)
|
|
self._client = DocumentProcessorServiceClient(
|
|
client_options=options,
|
|
client_info=get_client_info(module="document-ai"),
|
|
)
|
|
|
|
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
|
|
"""Parses a blob lazily.
|
|
|
|
Args:
|
|
blobs: a Blob to parse
|
|
|
|
This is a long-running operation. A recommended way is to batch
|
|
documents together and use the `batch_parse()` method.
|
|
"""
|
|
yield from self.batch_parse([blob], gcs_output_path=self._gcs_output_path)
|
|
|
|
def online_process(
|
|
self,
|
|
blob: Blob,
|
|
enable_native_pdf_parsing: bool = True,
|
|
field_mask: Optional[str] = None,
|
|
page_range: Optional[List[int]] = None,
|
|
) -> Iterator[Document]:
|
|
"""Parses a blob lazily using online processing.
|
|
|
|
Args:
|
|
blob: a blob to parse.
|
|
enable_native_pdf_parsing: enable pdf embedded text extraction
|
|
field_mask: a comma-separated list of which fields to include in the
|
|
Document AI response.
|
|
suggested: "text,pages.pageNumber,pages.layout"
|
|
page_range: list of page numbers to parse. If `None`,
|
|
entire document will be parsed.
|
|
"""
|
|
try:
|
|
from google.cloud import documentai
|
|
from google.cloud.documentai_v1.types import (
|
|
IndividualPageSelector,
|
|
OcrConfig,
|
|
ProcessOptions,
|
|
)
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"documentai package not found, please install it with"
|
|
" `pip install google-cloud-documentai`"
|
|
) from exc
|
|
try:
|
|
from google.cloud.documentai_toolbox.wrappers.page import _text_from_layout
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"documentai_toolbox package not found, please install it with"
|
|
" `pip install google-cloud-documentai-toolbox`"
|
|
) from exc
|
|
ocr_config = (
|
|
OcrConfig(enable_native_pdf_parsing=enable_native_pdf_parsing)
|
|
if enable_native_pdf_parsing
|
|
else None
|
|
)
|
|
individual_page_selector = (
|
|
IndividualPageSelector(pages=page_range) if page_range else None
|
|
)
|
|
|
|
response = self._client.process_document(
|
|
documentai.ProcessRequest(
|
|
name=self._processor_name,
|
|
gcs_document=documentai.GcsDocument(
|
|
gcs_uri=blob.path,
|
|
mime_type=blob.mimetype or "application/pdf",
|
|
),
|
|
process_options=ProcessOptions(
|
|
ocr_config=ocr_config,
|
|
individual_page_selector=individual_page_selector,
|
|
),
|
|
skip_human_review=True,
|
|
field_mask=field_mask,
|
|
)
|
|
)
|
|
yield from (
|
|
Document(
|
|
page_content=_text_from_layout(page.layout, response.document.text),
|
|
metadata={
|
|
"page": page.page_number,
|
|
"source": blob.path,
|
|
},
|
|
)
|
|
for page in response.document.pages
|
|
)
|
|
|
|
def batch_parse(
|
|
self,
|
|
blobs: Sequence[Blob],
|
|
gcs_output_path: Optional[str] = None,
|
|
timeout_sec: int = 3600,
|
|
check_in_interval_sec: int = 60,
|
|
) -> Iterator[Document]:
|
|
"""Parses a list of blobs lazily.
|
|
|
|
Args:
|
|
blobs: a list of blobs to parse.
|
|
gcs_output_path: a path on Google Cloud Storage to store parsing results.
|
|
timeout_sec: a timeout to wait for Document AI to complete, in seconds.
|
|
check_in_interval_sec: an interval to wait until next check
|
|
whether parsing operations have been completed, in seconds
|
|
This is a long-running operation. A recommended way is to decouple
|
|
parsing from creating LangChain Documents:
|
|
>>> operations = parser.docai_parse(blobs, gcs_path)
|
|
>>> parser.is_running(operations)
|
|
You can get operations names and save them:
|
|
>>> names = [op.operation.name for op in operations]
|
|
And when all operations are finished, you can use their results:
|
|
>>> operations = parser.operations_from_names(operation_names)
|
|
>>> results = parser.get_results(operations)
|
|
>>> docs = parser.parse_from_results(results)
|
|
"""
|
|
output_path = gcs_output_path or self._gcs_output_path
|
|
if not output_path:
|
|
raise ValueError(
|
|
"An output path on Google Cloud Storage should be provided."
|
|
)
|
|
operations = self.docai_parse(blobs, gcs_output_path=output_path)
|
|
operation_names = [op.operation.name for op in operations]
|
|
logger.debug(
|
|
"Started parsing with Document AI, submitted operations %s", operation_names
|
|
)
|
|
time_elapsed = 0
|
|
while self.is_running(operations):
|
|
time.sleep(check_in_interval_sec)
|
|
time_elapsed += check_in_interval_sec
|
|
if time_elapsed > timeout_sec:
|
|
raise TimeoutError(
|
|
"Timeout exceeded! Check operations " f"{operation_names} later!"
|
|
)
|
|
logger.debug(".")
|
|
|
|
results = self.get_results(operations=operations)
|
|
yield from self.parse_from_results(results)
|
|
|
|
def parse_from_results(
|
|
self, results: List[DocAIParsingResults]
|
|
) -> Iterator[Document]:
|
|
try:
|
|
from google.cloud.documentai_toolbox.utilities.gcs_utilities import (
|
|
split_gcs_uri,
|
|
)
|
|
from google.cloud.documentai_toolbox.wrappers.document import _get_shards
|
|
from google.cloud.documentai_toolbox.wrappers.page import _text_from_layout
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"documentai_toolbox package not found, please install it with"
|
|
" `pip install google-cloud-documentai-toolbox`"
|
|
) from exc
|
|
for result in results:
|
|
gcs_bucket_name, gcs_prefix = split_gcs_uri(result.parsed_path)
|
|
shards = _get_shards(gcs_bucket_name, gcs_prefix)
|
|
yield from (
|
|
Document(
|
|
page_content=_text_from_layout(page.layout, shard.text),
|
|
metadata={"page": page.page_number, "source": result.source_path},
|
|
)
|
|
for shard in shards
|
|
for page in shard.pages
|
|
)
|
|
|
|
def operations_from_names(self, operation_names: List[str]) -> List["Operation"]:
|
|
"""Initializes Long-Running Operations from their names."""
|
|
try:
|
|
from google.longrunning.operations_pb2 import (
|
|
GetOperationRequest, # type: ignore
|
|
)
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"long running operations package not found, please install it with"
|
|
" `pip install gapic-google-longrunning`"
|
|
) from exc
|
|
|
|
return [
|
|
self._client.get_operation(request=GetOperationRequest(name=name))
|
|
for name in operation_names
|
|
]
|
|
|
|
def is_running(self, operations: List["Operation"]) -> bool:
|
|
return any(not op.done() for op in operations)
|
|
|
|
def docai_parse(
|
|
self,
|
|
blobs: Sequence[Blob],
|
|
*,
|
|
gcs_output_path: Optional[str] = None,
|
|
processor_name: Optional[str] = None,
|
|
batch_size: int = 1000,
|
|
enable_native_pdf_parsing: bool = True,
|
|
field_mask: Optional[str] = None,
|
|
) -> List["Operation"]:
|
|
"""Runs Google Document AI PDF Batch Processing on a list of blobs.
|
|
|
|
Args:
|
|
blobs: a list of blobs to be parsed
|
|
gcs_output_path: a path (folder) on GCS to store results
|
|
processor_name: name of a Document AI processor.
|
|
batch_size: amount of documents per batch
|
|
enable_native_pdf_parsing: a config option for the parser
|
|
field_mask: a comma-separated list of which fields to include in the
|
|
Document AI response.
|
|
suggested: "text,pages.pageNumber,pages.layout"
|
|
|
|
Document AI has a 1000 file limit per batch, so batches larger than that need
|
|
to be split into multiple requests.
|
|
Batch processing is an async long-running operation
|
|
and results are stored in a output GCS bucket.
|
|
"""
|
|
try:
|
|
from google.cloud import documentai
|
|
from google.cloud.documentai_v1.types import OcrConfig, ProcessOptions
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"documentai package not found, please install it with"
|
|
" `pip install google-cloud-documentai`"
|
|
) from exc
|
|
|
|
output_path = gcs_output_path or self._gcs_output_path
|
|
if output_path is None:
|
|
raise ValueError(
|
|
"An output path on Google Cloud Storage should be provided."
|
|
)
|
|
processor_name = processor_name or self._processor_name
|
|
if processor_name is None:
|
|
raise ValueError("A Document AI processor name should be provided.")
|
|
|
|
operations = []
|
|
for batch in batch_iterate(size=batch_size, iterable=blobs):
|
|
input_config = documentai.BatchDocumentsInputConfig(
|
|
gcs_documents=documentai.GcsDocuments(
|
|
documents=[
|
|
documentai.GcsDocument(
|
|
gcs_uri=blob.path,
|
|
mime_type=blob.mimetype or "application/pdf",
|
|
)
|
|
for blob in batch
|
|
]
|
|
)
|
|
)
|
|
|
|
output_config = documentai.DocumentOutputConfig(
|
|
gcs_output_config=documentai.DocumentOutputConfig.GcsOutputConfig(
|
|
gcs_uri=output_path, field_mask=field_mask
|
|
)
|
|
)
|
|
|
|
process_options = (
|
|
ProcessOptions(
|
|
ocr_config=OcrConfig(
|
|
enable_native_pdf_parsing=enable_native_pdf_parsing
|
|
)
|
|
)
|
|
if enable_native_pdf_parsing
|
|
else None
|
|
)
|
|
operations.append(
|
|
self._client.batch_process_documents(
|
|
documentai.BatchProcessRequest(
|
|
name=processor_name,
|
|
input_documents=input_config,
|
|
document_output_config=output_config,
|
|
process_options=process_options,
|
|
skip_human_review=True,
|
|
)
|
|
)
|
|
)
|
|
return operations
|
|
|
|
def get_results(self, operations: List["Operation"]) -> List[DocAIParsingResults]:
|
|
try:
|
|
from google.cloud.documentai_v1 import BatchProcessMetadata
|
|
except ImportError as exc:
|
|
raise ImportError(
|
|
"documentai package not found, please install it with"
|
|
" `pip install google-cloud-documentai`"
|
|
) from exc
|
|
|
|
return [
|
|
DocAIParsingResults(
|
|
source_path=status.input_gcs_source,
|
|
parsed_path=status.output_gcs_destination,
|
|
)
|
|
for op in operations
|
|
for status in (
|
|
op.metadata.individual_process_statuses
|
|
if isinstance(op.metadata, BatchProcessMetadata)
|
|
else BatchProcessMetadata.deserialize(
|
|
op.metadata.value
|
|
).individual_process_statuses
|
|
)
|
|
]
|