mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
ed58eeb9c5
Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
225 lines
7.5 KiB
Python
225 lines
7.5 KiB
Python
import logging
|
|
from typing import Any, Dict, List, Mapping, Optional, cast
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import BaseChatModel
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatMessage,
|
|
FunctionMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.outputs import (
|
|
ChatGeneration,
|
|
ChatResult,
|
|
)
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# Ignoring type because below is valid pydantic code
|
|
# Unexpected keyword argument "extra" for "__init_subclass__" of "object" [call-arg]
|
|
class ChatParams(BaseModel, extra=Extra.allow): # type: ignore[call-arg]
|
|
"""Parameters for the `Javelin AI Gateway` LLM."""
|
|
|
|
temperature: float = 0.0
|
|
stop: Optional[List[str]] = None
|
|
max_tokens: Optional[int] = None
|
|
|
|
|
|
class ChatJavelinAIGateway(BaseChatModel):
|
|
"""`Javelin AI Gateway` chat models API.
|
|
|
|
To use, you should have the ``javelin_sdk`` python package installed.
|
|
For more information, see https://docs.getjavelin.io
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import ChatJavelinAIGateway
|
|
|
|
chat = ChatJavelinAIGateway(
|
|
gateway_uri="<javelin-ai-gateway-uri>",
|
|
route="<javelin-ai-gateway-chat-route>",
|
|
params={
|
|
"temperature": 0.1
|
|
}
|
|
)
|
|
"""
|
|
|
|
route: str
|
|
"""The route to use for the Javelin AI Gateway API."""
|
|
|
|
gateway_uri: Optional[str] = None
|
|
"""The URI for the Javelin AI Gateway API."""
|
|
|
|
params: Optional[ChatParams] = None
|
|
"""Parameters for the Javelin AI Gateway LLM."""
|
|
|
|
client: Any
|
|
"""javelin client."""
|
|
|
|
javelin_api_key: Optional[SecretStr] = None
|
|
"""The API key for the Javelin AI Gateway."""
|
|
|
|
def __init__(self, **kwargs: Any):
|
|
try:
|
|
from javelin_sdk import (
|
|
JavelinClient,
|
|
UnauthorizedError,
|
|
)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import javelin_sdk python package. "
|
|
"Please install it with `pip install javelin_sdk`."
|
|
)
|
|
|
|
super().__init__(**kwargs)
|
|
if self.gateway_uri:
|
|
try:
|
|
self.client = JavelinClient(
|
|
base_url=self.gateway_uri,
|
|
api_key=cast(SecretStr, self.javelin_api_key).get_secret_value(),
|
|
)
|
|
except UnauthorizedError as e:
|
|
raise ValueError("Javelin: Incorrect API Key.") from e
|
|
|
|
@property
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
params: Dict[str, Any] = {
|
|
"gateway_uri": self.gateway_uri,
|
|
"javelin_api_key": cast(SecretStr, self.javelin_api_key).get_secret_value(),
|
|
"route": self.route,
|
|
**(self.params.dict() if self.params else {}),
|
|
}
|
|
return params
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
message_dicts = [
|
|
ChatJavelinAIGateway._convert_message_to_dict(message)
|
|
for message in messages
|
|
]
|
|
data: Dict[str, Any] = {
|
|
"messages": message_dicts,
|
|
**(self.params.dict() if self.params else {}),
|
|
}
|
|
|
|
resp = self.client.query_route(self.route, query_body=data)
|
|
|
|
return ChatJavelinAIGateway._create_chat_result(resp.dict())
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
message_dicts = [
|
|
ChatJavelinAIGateway._convert_message_to_dict(message)
|
|
for message in messages
|
|
]
|
|
data: Dict[str, Any] = {
|
|
"messages": message_dicts,
|
|
**(self.params.dict() if self.params else {}),
|
|
}
|
|
|
|
resp = await self.client.aquery_route(self.route, query_body=data)
|
|
|
|
return ChatJavelinAIGateway._create_chat_result(resp.dict())
|
|
|
|
@property
|
|
def _identifying_params(self) -> Dict[str, Any]:
|
|
return self._default_params
|
|
|
|
def _get_invocation_params(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> Dict[str, Any]:
|
|
"""Get the parameters used to invoke the model FOR THE CALLBACKS."""
|
|
return {
|
|
**self._default_params,
|
|
**super()._get_invocation_params(stop=stop, **kwargs),
|
|
}
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of chat model."""
|
|
return "javelin-ai-gateway-chat"
|
|
|
|
@staticmethod
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
role = _dict["role"]
|
|
content = _dict["content"]
|
|
if role == "user":
|
|
return HumanMessage(content=content)
|
|
elif role == "assistant":
|
|
return AIMessage(content=content)
|
|
elif role == "system":
|
|
return SystemMessage(content=content)
|
|
else:
|
|
return ChatMessage(content=content, role=role)
|
|
|
|
@staticmethod
|
|
def _raise_functions_not_supported() -> None:
|
|
raise ValueError(
|
|
"Function messages are not supported by the Javelin AI Gateway. Please"
|
|
" create a feature request at https://docs.getjavelin.io"
|
|
)
|
|
|
|
@staticmethod
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
if isinstance(message, ChatMessage):
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
elif isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, FunctionMessage):
|
|
raise ValueError(
|
|
"Function messages are not supported by the Javelin AI Gateway. Please"
|
|
" create a feature request at https://docs.getjavelin.io"
|
|
)
|
|
else:
|
|
raise ValueError(f"Got unknown message type: {message}")
|
|
|
|
if "function_call" in message.additional_kwargs:
|
|
ChatJavelinAIGateway._raise_functions_not_supported()
|
|
if message.additional_kwargs:
|
|
logger.warning(
|
|
"Additional message arguments are unsupported by Javelin AI Gateway "
|
|
" and will be ignored: %s",
|
|
message.additional_kwargs,
|
|
)
|
|
return message_dict
|
|
|
|
@staticmethod
|
|
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
|
|
generations = []
|
|
for candidate in response["llm_response"]["choices"]:
|
|
message = ChatJavelinAIGateway._convert_dict_to_message(
|
|
candidate["message"]
|
|
)
|
|
message_metadata = candidate.get("metadata", {})
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info=dict(message_metadata),
|
|
)
|
|
generations.append(gen)
|
|
|
|
response_metadata = response.get("metadata", {})
|
|
return ChatResult(generations=generations, llm_output=response_metadata)
|