mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
20f530e9c5
Add embeddings based on the sentence transformers library. Add a notebook and integration tests. Co-authored-by: khimaros <me@khimaros.com>
39 lines
1.4 KiB
Python
39 lines
1.4 KiB
Python
# flake8: noqa
|
|
"""Test sentence_transformer embeddings."""
|
|
|
|
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
|
from langchain.vectorstores import Chroma
|
|
|
|
|
|
def test_sentence_transformer_embedding_documents() -> None:
|
|
"""Test sentence_transformer embeddings."""
|
|
embedding = SentenceTransformerEmbeddings()
|
|
documents = ["foo bar"]
|
|
output = embedding.embed_documents(documents)
|
|
assert len(output) == 1
|
|
assert len(output[0]) == 384
|
|
|
|
|
|
def test_sentence_transformer_embedding_query() -> None:
|
|
"""Test sentence_transformer embeddings."""
|
|
embedding = SentenceTransformerEmbeddings()
|
|
query = "what the foo is a bar?"
|
|
query_vector = embedding.embed_query(query)
|
|
assert len(query_vector) == 384
|
|
|
|
|
|
def test_sentence_transformer_db_query() -> None:
|
|
"""Test sentence_transformer similarity search."""
|
|
embedding = SentenceTransformerEmbeddings()
|
|
texts = [
|
|
"we will foo your bar until you can't foo any more",
|
|
"the quick brown fox jumped over the lazy dog",
|
|
]
|
|
query = "what the foo is a bar?"
|
|
query_vector = embedding.embed_query(query)
|
|
assert len(query_vector) == 384
|
|
db = Chroma(embedding_function=embedding)
|
|
db.add_texts(texts)
|
|
docs = db.similarity_search_by_vector(query_vector, k=2)
|
|
assert docs[0].page_content == "we will foo your bar until you can't foo any more"
|