langchain/docs/extras/integrations/document_loaders/larksuite.ipynb
2023-07-23 23:23:16 -07:00

104 lines
2.8 KiB
Plaintext

{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "33205b12",
"metadata": {},
"source": [
"# LarkSuite (FeiShu)\n",
"\n",
">[LarkSuite](https://www.larksuite.com/) is an enterprise collaboration platform developed by ByteDance.\n",
"\n",
"This notebook covers how to load data from the `LarkSuite` REST API into a format that can be ingested into LangChain, along with example usage for text summarization.\n",
"\n",
"The LarkSuite API requires an access token (tenant_access_token or user_access_token), checkout [LarkSuite open platform document](https://open.larksuite.com/document) for API details."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "90b69c94",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-19T10:05:03.645161Z",
"start_time": "2023-06-19T10:04:49.541968Z"
},
"tags": []
},
"outputs": [],
"source": [
"from getpass import getpass\n",
"from langchain.document_loaders.larksuite import LarkSuiteDocLoader\n",
"\n",
"DOMAIN = input(\"larksuite domain\")\n",
"ACCESS_TOKEN = getpass(\"larksuite tenant_access_token or user_access_token\")\n",
"DOCUMENT_ID = input(\"larksuite document id\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "13deb0f5",
"metadata": {
"ExecuteTime": {
"end_time": "2023-06-19T10:05:36.016495Z",
"start_time": "2023-06-19T10:05:35.360884Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='Test Doc\\nThis is a Test Doc\\n\\n1\\n2\\n3\\n\\n', metadata={'document_id': 'V76kdbd2HoBbYJxdiNNccajunPf', 'revision_id': 11, 'title': 'Test Doc'})]\n"
]
}
],
"source": [
"from pprint import pprint\n",
"\n",
"larksuite_loader = LarkSuiteDocLoader(DOMAIN, ACCESS_TOKEN, DOCUMENT_ID)\n",
"docs = larksuite_loader.load()\n",
"\n",
"pprint(docs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ccc1e2f",
"metadata": {},
"outputs": [],
"source": [
"# see https://python.langchain.com/docs/use_cases/summarization for more details\n",
"from langchain.chains.summarize import load_summarize_chain\n",
"\n",
"chain = load_summarize_chain(llm, chain_type=\"map_reduce\")\n",
"chain.run(docs)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}