mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
221 lines
5.9 KiB
Plaintext
221 lines
5.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Context\n",
|
|
"\n",
|
|
"![Context - Product Analytics for AI Chatbots](https://go.getcontext.ai/langchain.png)\n",
|
|
"\n",
|
|
"[Context](https://getcontext.ai/) provides product analytics for AI chatbots.\n",
|
|
"\n",
|
|
"Context helps you understand how users are interacting with your AI chat products.\n",
|
|
"Gain critical insights, optimise poor experiences, and minimise brand risks.\n"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this guide we will show you how to integrate with Context."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"source": [
|
|
"## Installation and Setup"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"vscode": {
|
|
"languageId": "shellscript"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"$ pip install context-python --upgrade"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Getting API Credentials\n",
|
|
"\n",
|
|
"To get your Context API token:\n",
|
|
"\n",
|
|
"1. Go to the settings page within your Context account (https://go.getcontext.ai/settings).\n",
|
|
"2. Generate a new API Token.\n",
|
|
"3. Store this token somewhere secure."
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Setup Context\n",
|
|
"\n",
|
|
"To use the `ContextCallbackHandler`, import the handler from Langchain and instantiate it with your Context API token.\n",
|
|
"\n",
|
|
"Ensure you have installed the `context-python` package before using the handler."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"from langchain.callbacks import ContextCallbackHandler\n",
|
|
"\n",
|
|
"token = os.environ[\"CONTEXT_API_TOKEN\"]\n",
|
|
"\n",
|
|
"context_callback = ContextCallbackHandler(token)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Usage\n",
|
|
"### Using the Context callback within a Chat Model\n",
|
|
"\n",
|
|
"The Context callback handler can be used to directly record transcripts between users and AI assistants.\n",
|
|
"\n",
|
|
"#### Example"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"from langchain.chat_models import ChatOpenAI\n",
|
|
"from langchain.schema import (\n",
|
|
" SystemMessage,\n",
|
|
" HumanMessage,\n",
|
|
")\n",
|
|
"from langchain.callbacks import ContextCallbackHandler\n",
|
|
"\n",
|
|
"token = os.environ[\"CONTEXT_API_TOKEN\"]\n",
|
|
"\n",
|
|
"chat = ChatOpenAI(\n",
|
|
" headers={\"user_id\": \"123\"}, temperature=0, callbacks=[ContextCallbackHandler(token)]\n",
|
|
")\n",
|
|
"\n",
|
|
"messages = [\n",
|
|
" SystemMessage(\n",
|
|
" content=\"You are a helpful assistant that translates English to French.\"\n",
|
|
" ),\n",
|
|
" HumanMessage(content=\"I love programming.\"),\n",
|
|
"]\n",
|
|
"\n",
|
|
"print(chat(messages))"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Using the Context callback within Chains\n",
|
|
"\n",
|
|
"The Context callback handler can also be used to record the inputs and outputs of chains. Note that intermediate steps of the chain are not recorded - only the starting inputs and final outputs.\n",
|
|
"\n",
|
|
"__Note:__ Ensure that you pass the same context object to the chat model and the chain.\n",
|
|
"\n",
|
|
"Wrong:\n",
|
|
"> ```python\n",
|
|
"> chat = ChatOpenAI(temperature=0.9, callbacks=[ContextCallbackHandler(token)])\n",
|
|
"> chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[ContextCallbackHandler(token)])\n",
|
|
"> ```\n",
|
|
"\n",
|
|
"Correct:\n",
|
|
">```python\n",
|
|
">handler = ContextCallbackHandler(token)\n",
|
|
">chat = ChatOpenAI(temperature=0.9, callbacks=[callback])\n",
|
|
">chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[callback])\n",
|
|
">```\n",
|
|
"\n",
|
|
"#### Example"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os\n",
|
|
"\n",
|
|
"from langchain.chat_models import ChatOpenAI\n",
|
|
"from langchain import LLMChain\n",
|
|
"from langchain.prompts import PromptTemplate\n",
|
|
"from langchain.prompts.chat import (\n",
|
|
" ChatPromptTemplate,\n",
|
|
" HumanMessagePromptTemplate,\n",
|
|
")\n",
|
|
"from langchain.callbacks import ContextCallbackHandler\n",
|
|
"\n",
|
|
"token = os.environ[\"CONTEXT_API_TOKEN\"]\n",
|
|
"\n",
|
|
"human_message_prompt = HumanMessagePromptTemplate(\n",
|
|
" prompt=PromptTemplate(\n",
|
|
" template=\"What is a good name for a company that makes {product}?\",\n",
|
|
" input_variables=[\"product\"],\n",
|
|
" )\n",
|
|
")\n",
|
|
"chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])\n",
|
|
"callback = ContextCallbackHandler(token)\n",
|
|
"chat = ChatOpenAI(temperature=0.9, callbacks=[callback])\n",
|
|
"chain = LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[callback])\n",
|
|
"print(chain.run(\"colorful socks\"))"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "a53ebf4a859167383b364e7e7521d0add3c2dbbdecce4edf676e8c4634ff3fbb"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|