langchain/templates/rag-chroma-multi-modal-multi-vector/ingest.py
Lance Martin 320c3ae4c8
templates: Add Ollama multi-modal templates (#14868)
Templates for [local multi-modal
LLMs](https://llava-vl.github.io/llava-interactive/) using -
* Image summaries
* Multi-modal embeddings

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-12-20 15:28:53 -08:00

210 lines
6.1 KiB
Python

import base64
import io
import os
import uuid
from io import BytesIO
from pathlib import Path
import pypdfium2 as pdfium
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.schema.document import Document
from langchain.schema.messages import HumanMessage
from langchain.storage import LocalFileStore, UpstashRedisByteStore
from langchain.vectorstores import Chroma
from PIL import Image
def image_summarize(img_base64, prompt):
"""
Make image summary
:param img_base64: Base64 encoded string for image
:param prompt: Text prompt for summarizatiomn
:return: Image summarization prompt
"""
chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=1024)
msg = chat.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
]
)
]
)
return msg.content
def generate_img_summaries(img_base64_list):
"""
Generate summaries for images
:param img_base64_list: Base64 encoded images
:return: List of image summaries and processed images
"""
# Store image summaries
image_summaries = []
processed_images = []
# Prompt
prompt = """You are an assistant tasked with summarizing images for retrieval. \
These summaries will be embedded and used to retrieve the raw image. \
Give a concise summary of the image that is well optimized for retrieval."""
# Apply summarization to images
for i, base64_image in enumerate(img_base64_list):
try:
image_summaries.append(image_summarize(base64_image, prompt))
processed_images.append(base64_image)
except Exception as e:
print(f"Error with image {i+1}: {e}")
return image_summaries, processed_images
def get_images_from_pdf(pdf_path):
"""
Extract images from each page of a PDF document and save as JPEG files.
:param pdf_path: A string representing the path to the PDF file.
"""
pdf = pdfium.PdfDocument(pdf_path)
n_pages = len(pdf)
pil_images = []
for page_number in range(n_pages):
page = pdf.get_page(page_number)
bitmap = page.render(scale=1, rotation=0, crop=(0, 0, 0, 0))
pil_image = bitmap.to_pil()
pil_images.append(pil_image)
return pil_images
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string
:param base64_string: Base64 string
:param size: Image size
:return: Re-sized Base64 string
"""
# Decode the Base64 string
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
# Resize the image
resized_img = img.resize(size, Image.LANCZOS)
# Save the resized image to a bytes buffer
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
# Encode the resized image to Base64
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def convert_to_base64(pil_image):
"""
Convert PIL images to Base64 encoded strings
:param pil_image: PIL image
:return: Re-sized Base64 string
"""
buffered = BytesIO()
pil_image.save(buffered, format="JPEG") # You can change the format if needed
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
img_str = resize_base64_image(img_str, size=(960, 540))
return img_str
def create_multi_vector_retriever(
vectorstore, image_summaries, images, local_file_store
):
"""
Create retriever that indexes summaries, but returns raw images or texts
:param vectorstore: Vectorstore to store embedded image sumamries
:param image_summaries: Image summaries
:param images: Base64 encoded images
:param local_file_store: Use local file storage
:return: Retriever
"""
# File storage option
if local_file_store:
store = LocalFileStore(
str(Path(__file__).parent / "multi_vector_retriever_metadata")
)
else:
# Initialize the storage layer for images using Redis
UPSTASH_URL = os.getenv("UPSTASH_URL")
UPSTASH_TOKEN = os.getenv("UPSTASH_TOKEN")
store = UpstashRedisByteStore(url=UPSTASH_URL, token=UPSTASH_TOKEN)
# Doc ID
id_key = "doc_id"
# Create the multi-vector retriever
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=id_key,
)
# Helper function to add documents to the vectorstore and docstore
def add_documents(retriever, doc_summaries, doc_contents):
doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
summary_docs = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(doc_summaries)
]
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, doc_contents)))
add_documents(retriever, image_summaries, images)
return retriever
# Load PDF
doc_path = Path(__file__).parent / "docs/DDOG_Q3_earnings_deck.pdf"
rel_doc_path = doc_path.relative_to(Path.cwd())
print("Extract slides as images")
pil_images = get_images_from_pdf(rel_doc_path)
# Convert to b64
images_base_64 = [convert_to_base64(i) for i in pil_images]
# Image summaries
print("Generate image summaries")
image_summaries, images_base_64_processed = generate_img_summaries(images_base_64)
# The vectorstore to use to index the images summaries
vectorstore_mvr = Chroma(
collection_name="image_summaries",
persist_directory=str(Path(__file__).parent / "chroma_db_multi_modal"),
embedding_function=OpenAIEmbeddings(),
)
# Create documents
images_base_64_processed_documents = [
Document(page_content=i) for i in images_base_64_processed
]
# Create retriever
retriever_multi_vector_img = create_multi_vector_retriever(
vectorstore_mvr,
image_summaries,
images_base_64_processed_documents,
local_file_store=True,
)