langchain/docs/modules/models/llms/integrations/sagemaker.ipynb
Harrison Chase 705431aecc
big docs refactor (#1978)
Co-authored-by: Ankush Gola <ankush.gola@gmail.com>
2023-03-26 19:49:46 -07:00

132 lines
3.6 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# SageMakerEndpoint\n",
"\n",
"This notebooks goes over how to use an LLM hosted on a SageMaker endpoint."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip3 install langchain boto3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.docstore.document import Document"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"example_doc_1 = \"\"\"\n",
"Peter and Elizabeth took a taxi to attend the night party in the city. While in the party, Elizabeth collapsed and was rushed to the hospital.\n",
"Since she was diagnosed with a brain injury, the doctor told Peter to stay besides her until she gets well.\n",
"Therefore, Peter stayed with her at the hospital for 3 days without leaving.\n",
"\"\"\"\n",
"\n",
"docs = [\n",
" Document(\n",
" page_content=example_doc_1,\n",
" )\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from typing import Dict\n",
"\n",
"from langchain import PromptTemplate, SagemakerEndpoint\n",
"from langchain.llms.sagemaker_endpoint import ContentHandlerBase\n",
"from langchain.chains.question_answering import load_qa_chain\n",
"import json\n",
"\n",
"query = \"\"\"How long was Elizabeth hospitalized?\n",
"\"\"\"\n",
"\n",
"prompt_template = \"\"\"Use the following pieces of context to answer the question at the end.\n",
"\n",
"{context}\n",
"\n",
"Question: {question}\n",
"Answer:\"\"\"\n",
"PROMPT = PromptTemplate(\n",
" template=prompt_template, input_variables=[\"context\", \"question\"]\n",
")\n",
"\n",
"class ContentHandler(ContentHandlerBase):\n",
" content_type = \"application/json\"\n",
" accepts = \"application/json\"\n",
"\n",
" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes:\n",
" input_str = json.dumps({prompt: prompt, **model_kwargs})\n",
" return input_str.encode('utf-8')\n",
" \n",
" def transform_output(self, output: bytes) -> str:\n",
" response_json = json.loads(output.read().decode(\"utf-8\"))\n",
" return response_json[0][\"generated_text\"]\n",
"\n",
"content_handler = ContentHandler()\n",
"\n",
"chain = load_qa_chain(\n",
" llm=SagemakerEndpoint(\n",
" endpoint_name=\"endpoint-name\", \n",
" credentials_profile_name=\"credentials-profile-name\", \n",
" region_name=\"us-west-2\", \n",
" model_kwargs={\"temperature\":1e-10},\n",
" content_handler=content_handler\n",
" ),\n",
" prompt=PROMPT\n",
")\n",
"\n",
"chain({\"input_documents\": docs, \"question\": query}, return_only_outputs=True)\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}