langchain/libs/community/langchain_community/document_loaders/parsers/pdf.py
Bagatur fa5d49f2c1
docs, experimental[patch], langchain[patch], community[patch]: update storage imports (#15429)
ran 
```bash
g grep -l "langchain.vectorstores" | xargs -L 1 sed -i '' "s/langchain\.vectorstores/langchain_community.vectorstores/g"
g grep -l "langchain.document_loaders" | xargs -L 1 sed -i '' "s/langchain\.document_loaders/langchain_community.document_loaders/g"
g grep -l "langchain.chat_loaders" | xargs -L 1 sed -i '' "s/langchain\.chat_loaders/langchain_community.chat_loaders/g"
g grep -l "langchain.document_transformers" | xargs -L 1 sed -i '' "s/langchain\.document_transformers/langchain_community.document_transformers/g"
g grep -l "langchain\.graphs" | xargs -L 1 sed -i '' "s/langchain\.graphs/langchain_community.graphs/g"
g grep -l "langchain\.memory\.chat_message_histories" | xargs -L 1 sed -i '' "s/langchain\.memory\.chat_message_histories/langchain_community.chat_message_histories/g"
gco master libs/langchain/tests/unit_tests/*/test_imports.py
gco master libs/langchain/tests/unit_tests/**/test_public_api.py
```
2024-01-02 16:47:11 -05:00

582 lines
20 KiB
Python

"""Module contains common parsers for PDFs."""
from __future__ import annotations
import warnings
from typing import (
TYPE_CHECKING,
Any,
Iterable,
Iterator,
Mapping,
Optional,
Sequence,
Union,
)
from urllib.parse import urlparse
import numpy as np
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
if TYPE_CHECKING:
import fitz.fitz
import pdfminer.layout
import pdfplumber.page
import pypdf._page
import pypdfium2._helpers.page
_PDF_FILTER_WITH_LOSS = ["DCTDecode", "DCT", "JPXDecode"]
_PDF_FILTER_WITHOUT_LOSS = [
"LZWDecode",
"LZW",
"FlateDecode",
"Fl",
"ASCII85Decode",
"A85",
"ASCIIHexDecode",
"AHx",
"RunLengthDecode",
"RL",
"CCITTFaxDecode",
"CCF",
"JBIG2Decode",
]
def extract_from_images_with_rapidocr(
images: Sequence[Union[Iterable[np.ndarray], bytes]],
) -> str:
"""Extract text from images with RapidOCR.
Args:
images: Images to extract text from.
Returns:
Text extracted from images.
Raises:
ImportError: If `rapidocr-onnxruntime` package is not installed.
"""
try:
from rapidocr_onnxruntime import RapidOCR
except ImportError:
raise ImportError(
"`rapidocr-onnxruntime` package not found, please install it with "
"`pip install rapidocr-onnxruntime`"
)
ocr = RapidOCR()
text = ""
for img in images:
result, _ = ocr(img)
if result:
result = [text[1] for text in result]
text += "\n".join(result)
return text
class PyPDFParser(BaseBlobParser):
"""Load `PDF` using `pypdf`"""
def __init__(
self, password: Optional[Union[str, bytes]] = None, extract_images: bool = False
):
self.password = password
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import pypdf
with blob.as_bytes_io() as pdf_file_obj:
pdf_reader = pypdf.PdfReader(pdf_file_obj, password=self.password)
yield from [
Document(
page_content=page.extract_text()
+ self._extract_images_from_page(page),
metadata={"source": blob.source, "page": page_number},
)
for page_number, page in enumerate(pdf_reader.pages)
]
def _extract_images_from_page(self, page: pypdf._page.PageObject) -> str:
"""Extract images from page and get the text with RapidOCR."""
if not self.extract_images or "/XObject" not in page["/Resources"].keys():
return ""
xObject = page["/Resources"]["/XObject"].get_object() # type: ignore
images = []
for obj in xObject:
if xObject[obj]["/Subtype"] == "/Image":
if xObject[obj]["/Filter"][1:] in _PDF_FILTER_WITHOUT_LOSS:
height, width = xObject[obj]["/Height"], xObject[obj]["/Width"]
images.append(
np.frombuffer(xObject[obj].get_data(), dtype=np.uint8).reshape(
height, width, -1
)
)
elif xObject[obj]["/Filter"][1:] in _PDF_FILTER_WITH_LOSS:
images.append(xObject[obj].get_data())
else:
warnings.warn("Unknown PDF Filter!")
return extract_from_images_with_rapidocr(images)
class PDFMinerParser(BaseBlobParser):
"""Parse `PDF` using `PDFMiner`."""
def __init__(self, extract_images: bool = False, *, concatenate_pages: bool = True):
"""Initialize a parser based on PDFMiner.
Args:
extract_images: Whether to extract images from PDF.
concatenate_pages: If True, concatenate all PDF pages into one a single
document. Otherwise, return one document per page.
"""
self.extract_images = extract_images
self.concatenate_pages = concatenate_pages
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
if not self.extract_images:
from pdfminer.high_level import extract_text
with blob.as_bytes_io() as pdf_file_obj:
if self.concatenate_pages:
text = extract_text(pdf_file_obj)
metadata = {"source": blob.source}
yield Document(page_content=text, metadata=metadata)
else:
from pdfminer.pdfpage import PDFPage
pages = PDFPage.get_pages(pdf_file_obj)
for i, _ in enumerate(pages):
text = extract_text(pdf_file_obj, page_numbers=[i])
metadata = {"source": blob.source, "page": str(i)}
yield Document(page_content=text, metadata=metadata)
else:
import io
from pdfminer.converter import PDFPageAggregator, TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager
from pdfminer.pdfpage import PDFPage
text_io = io.StringIO()
with blob.as_bytes_io() as pdf_file_obj:
pages = PDFPage.get_pages(pdf_file_obj)
rsrcmgr = PDFResourceManager()
device_for_text = TextConverter(rsrcmgr, text_io, laparams=LAParams())
device_for_image = PDFPageAggregator(rsrcmgr, laparams=LAParams())
interpreter_for_text = PDFPageInterpreter(rsrcmgr, device_for_text)
interpreter_for_image = PDFPageInterpreter(rsrcmgr, device_for_image)
for i, page in enumerate(pages):
interpreter_for_text.process_page(page)
interpreter_for_image.process_page(page)
content = text_io.getvalue() + self._extract_images_from_page(
device_for_image.get_result()
)
text_io.truncate(0)
text_io.seek(0)
metadata = {"source": blob.source, "page": str(i)}
yield Document(page_content=content, metadata=metadata)
def _extract_images_from_page(self, page: pdfminer.layout.LTPage) -> str:
"""Extract images from page and get the text with RapidOCR."""
import pdfminer
def get_image(layout_object: Any) -> Any:
if isinstance(layout_object, pdfminer.layout.LTImage):
return layout_object
if isinstance(layout_object, pdfminer.layout.LTContainer):
for child in layout_object:
return get_image(child)
else:
return None
images = []
for img in list(filter(bool, map(get_image, page))):
if img.stream["Filter"].name in _PDF_FILTER_WITHOUT_LOSS:
images.append(
np.frombuffer(img.stream.get_data(), dtype=np.uint8).reshape(
img.stream["Height"], img.stream["Width"], -1
)
)
elif img.stream["Filter"].name in _PDF_FILTER_WITH_LOSS:
images.append(img.stream.get_data())
else:
warnings.warn("Unknown PDF Filter!")
return extract_from_images_with_rapidocr(images)
class PyMuPDFParser(BaseBlobParser):
"""Parse `PDF` using `PyMuPDF`."""
def __init__(
self,
text_kwargs: Optional[Mapping[str, Any]] = None,
extract_images: bool = False,
) -> None:
"""Initialize the parser.
Args:
text_kwargs: Keyword arguments to pass to ``fitz.Page.get_text()``.
"""
self.text_kwargs = text_kwargs or {}
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import fitz
with blob.as_bytes_io() as file_path:
if blob.data is None:
doc = fitz.open(file_path)
else:
doc = fitz.open(stream=file_path, filetype="pdf")
yield from [
Document(
page_content=page.get_text(**self.text_kwargs)
+ self._extract_images_from_page(doc, page),
metadata=dict(
{
"source": blob.source,
"file_path": blob.source,
"page": page.number,
"total_pages": len(doc),
},
**{
k: doc.metadata[k]
for k in doc.metadata
if type(doc.metadata[k]) in [str, int]
},
),
)
for page in doc
]
def _extract_images_from_page(
self, doc: fitz.fitz.Document, page: fitz.fitz.Page
) -> str:
"""Extract images from page and get the text with RapidOCR."""
if not self.extract_images:
return ""
import fitz
img_list = page.get_images()
imgs = []
for img in img_list:
xref = img[0]
pix = fitz.Pixmap(doc, xref)
imgs.append(
np.frombuffer(pix.samples, dtype=np.uint8).reshape(
pix.height, pix.width, -1
)
)
return extract_from_images_with_rapidocr(imgs)
class PyPDFium2Parser(BaseBlobParser):
"""Parse `PDF` with `PyPDFium2`."""
def __init__(self, extract_images: bool = False) -> None:
"""Initialize the parser."""
try:
import pypdfium2 # noqa:F401
except ImportError:
raise ImportError(
"pypdfium2 package not found, please install it with"
" `pip install pypdfium2`"
)
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import pypdfium2
# pypdfium2 is really finicky with respect to closing things,
# if done incorrectly creates seg faults.
with blob.as_bytes_io() as file_path:
pdf_reader = pypdfium2.PdfDocument(file_path, autoclose=True)
try:
for page_number, page in enumerate(pdf_reader):
text_page = page.get_textpage()
content = text_page.get_text_range()
text_page.close()
content += "\n" + self._extract_images_from_page(page)
page.close()
metadata = {"source": blob.source, "page": page_number}
yield Document(page_content=content, metadata=metadata)
finally:
pdf_reader.close()
def _extract_images_from_page(self, page: pypdfium2._helpers.page.PdfPage) -> str:
"""Extract images from page and get the text with RapidOCR."""
if not self.extract_images:
return ""
import pypdfium2.raw as pdfium_c
images = list(page.get_objects(filter=(pdfium_c.FPDF_PAGEOBJ_IMAGE,)))
images = list(map(lambda x: x.get_bitmap().to_numpy(), images))
return extract_from_images_with_rapidocr(images)
class PDFPlumberParser(BaseBlobParser):
"""Parse `PDF` with `PDFPlumber`."""
def __init__(
self,
text_kwargs: Optional[Mapping[str, Any]] = None,
dedupe: bool = False,
extract_images: bool = False,
) -> None:
"""Initialize the parser.
Args:
text_kwargs: Keyword arguments to pass to ``pdfplumber.Page.extract_text()``
dedupe: Avoiding the error of duplicate characters if `dedupe=True`.
"""
self.text_kwargs = text_kwargs or {}
self.dedupe = dedupe
self.extract_images = extract_images
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
import pdfplumber
with blob.as_bytes_io() as file_path:
doc = pdfplumber.open(file_path) # open document
yield from [
Document(
page_content=self._process_page_content(page)
+ "\n"
+ self._extract_images_from_page(page),
metadata=dict(
{
"source": blob.source,
"file_path": blob.source,
"page": page.page_number - 1,
"total_pages": len(doc.pages),
},
**{
k: doc.metadata[k]
for k in doc.metadata
if type(doc.metadata[k]) in [str, int]
},
),
)
for page in doc.pages
]
def _process_page_content(self, page: pdfplumber.page.Page) -> str:
"""Process the page content based on dedupe."""
if self.dedupe:
return page.dedupe_chars().extract_text(**self.text_kwargs)
return page.extract_text(**self.text_kwargs)
def _extract_images_from_page(self, page: pdfplumber.page.Page) -> str:
"""Extract images from page and get the text with RapidOCR."""
if not self.extract_images:
return ""
images = []
for img in page.images:
if img["stream"]["Filter"].name in _PDF_FILTER_WITHOUT_LOSS:
images.append(
np.frombuffer(img["stream"].get_data(), dtype=np.uint8).reshape(
img["stream"]["Height"], img["stream"]["Width"], -1
)
)
elif img["stream"]["Filter"].name in _PDF_FILTER_WITH_LOSS:
images.append(img["stream"].get_data())
else:
warnings.warn("Unknown PDF Filter!")
return extract_from_images_with_rapidocr(images)
class AmazonTextractPDFParser(BaseBlobParser):
"""Send `PDF` files to `Amazon Textract` and parse them.
For parsing multi-page PDFs, they have to reside on S3.
The AmazonTextractPDFLoader calls the
[Amazon Textract Service](https://aws.amazon.com/textract/)
to convert PDFs into a Document structure.
Single and multi-page documents are supported with up to 3000 pages
and 512 MB of size.
For the call to be successful an AWS account is required,
similar to the
[AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html)
requirements.
Besides the AWS configuration, it is very similar to the other PDF
loaders, while also supporting JPEG, PNG and TIFF and non-native
PDF formats.
```python
from langchain_community.document_loaders import AmazonTextractPDFLoader
loader=AmazonTextractPDFLoader("example_data/alejandro_rosalez_sample-small.jpeg")
documents = loader.load()
```
One feature is the linearization of the output.
When using the features LAYOUT, FORMS or TABLES together with Textract
```python
from langchain_community.document_loaders import AmazonTextractPDFLoader
# you can mix and match each of the features
loader=AmazonTextractPDFLoader(
"example_data/alejandro_rosalez_sample-small.jpeg",
textract_features=["TABLES", "LAYOUT"])
documents = loader.load()
```
it will generate output that formats the text in reading order and
try to output the information in a tabular structure or
output the key/value pairs with a colon (key: value).
This helps most LLMs to achieve better accuracy when
processing these texts.
"""
def __init__(
self,
textract_features: Optional[Sequence[int]] = None,
client: Optional[Any] = None,
) -> None:
"""Initializes the parser.
Args:
textract_features: Features to be used for extraction, each feature
should be passed as an int that conforms to the enum
`Textract_Features`, see `amazon-textract-caller` pkg
client: boto3 textract client
"""
try:
import textractcaller as tc
import textractor.entities.document as textractor
self.tc = tc
self.textractor = textractor
if textract_features is not None:
self.textract_features = [
tc.Textract_Features(f) for f in textract_features
]
else:
self.textract_features = []
except ImportError:
raise ImportError(
"Could not import amazon-textract-caller or "
"amazon-textract-textractor python package. Please install it "
"with `pip install amazon-textract-caller` & "
"`pip install amazon-textract-textractor`."
)
if not client:
try:
import boto3
self.boto3_textract_client = boto3.client("textract")
except ImportError:
raise ImportError(
"Could not import boto3 python package. "
"Please install it with `pip install boto3`."
)
else:
self.boto3_textract_client = client
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Iterates over the Blob pages and returns an Iterator with a Document
for each page, like the other parsers If multi-page document, blob.path
has to be set to the S3 URI and for single page docs
the blob.data is taken
"""
url_parse_result = urlparse(str(blob.path)) if blob.path else None
# Either call with S3 path (multi-page) or with bytes (single-page)
if (
url_parse_result
and url_parse_result.scheme == "s3"
and url_parse_result.netloc
):
textract_response_json = self.tc.call_textract(
input_document=str(blob.path),
features=self.textract_features,
boto3_textract_client=self.boto3_textract_client,
)
else:
textract_response_json = self.tc.call_textract(
input_document=blob.as_bytes(),
features=self.textract_features,
call_mode=self.tc.Textract_Call_Mode.FORCE_SYNC,
boto3_textract_client=self.boto3_textract_client,
)
document = self.textractor.Document.open(textract_response_json)
linearizer_config = self.textractor.TextLinearizationConfig(
hide_figure_layout=True,
title_prefix="# ",
section_header_prefix="## ",
list_element_prefix="*",
)
for idx, page in enumerate(document.pages):
yield Document(
page_content=page.get_text(config=linearizer_config),
metadata={"source": blob.source, "page": idx + 1},
)
class DocumentIntelligenceParser(BaseBlobParser):
"""Loads a PDF with Azure Document Intelligence
(formerly Form Recognizer) and chunks at character level."""
def __init__(self, client: Any, model: str):
warnings.warn(
"langchain_community.document_loaders.parsers.pdf.DocumentIntelligenceParser"
"and langchain_community.document_loaders.pdf.DocumentIntelligenceLoader"
" are deprecated. Please upgrade to "
"langchain_community.document_loaders.DocumentIntelligenceLoader "
"for any file parsing purpose using Azure Document Intelligence "
"service."
)
self.client = client
self.model = model
def _generate_docs(self, blob: Blob, result: Any) -> Iterator[Document]:
for p in result.pages:
content = " ".join([line.content for line in p.lines])
d = Document(
page_content=content,
metadata={
"source": blob.source,
"page": p.page_number,
},
)
yield d
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Lazily parse the blob."""
with blob.as_bytes_io() as file_obj:
poller = self.client.begin_analyze_document(self.model, file_obj)
result = poller.result()
docs = self._generate_docs(blob, result)
yield from docs