langchain/libs/community/langchain_community/callbacks/streamlit/__init__.py
2024-02-05 12:37:27 -08:00

83 lines
3.1 KiB
Python

from __future__ import annotations
from typing import TYPE_CHECKING, Optional
from langchain_core.callbacks import BaseCallbackHandler
from langchain_community.callbacks.streamlit.streamlit_callback_handler import (
LLMThoughtLabeler as LLMThoughtLabeler,
)
from langchain_community.callbacks.streamlit.streamlit_callback_handler import (
StreamlitCallbackHandler as _InternalStreamlitCallbackHandler,
)
if TYPE_CHECKING:
from streamlit.delta_generator import DeltaGenerator
def StreamlitCallbackHandler(
parent_container: DeltaGenerator,
*,
max_thought_containers: int = 4,
expand_new_thoughts: bool = True,
collapse_completed_thoughts: bool = True,
thought_labeler: Optional[LLMThoughtLabeler] = None,
) -> BaseCallbackHandler:
"""Callback Handler that writes to a Streamlit app.
This CallbackHandler is geared towards
use with a LangChain Agent; it displays the Agent's LLM and tool-usage "thoughts"
inside a series of Streamlit expanders.
Parameters
----------
parent_container
The `st.container` that will contain all the Streamlit elements that the
Handler creates.
max_thought_containers
The max number of completed LLM thought containers to show at once. When this
threshold is reached, a new thought will cause the oldest thoughts to be
collapsed into a "History" expander. Defaults to 4.
expand_new_thoughts
Each LLM "thought" gets its own `st.expander`. This param controls whether that
expander is expanded by default. Defaults to True.
collapse_completed_thoughts
If True, LLM thought expanders will be collapsed when completed.
Defaults to True.
thought_labeler
An optional custom LLMThoughtLabeler instance. If unspecified, the handler
will use the default thought labeling logic. Defaults to None.
Returns
-------
A new StreamlitCallbackHandler instance.
Note that this is an "auto-updating" API: if the installed version of Streamlit
has a more recent StreamlitCallbackHandler implementation, an instance of that class
will be used.
"""
# If we're using a version of Streamlit that implements StreamlitCallbackHandler,
# delegate to it instead of using our built-in handler. The official handler is
# guaranteed to support the same set of kwargs.
try:
from streamlit.external.langchain import (
StreamlitCallbackHandler as OfficialStreamlitCallbackHandler,
)
return OfficialStreamlitCallbackHandler(
parent_container,
max_thought_containers=max_thought_containers,
expand_new_thoughts=expand_new_thoughts,
collapse_completed_thoughts=collapse_completed_thoughts,
thought_labeler=thought_labeler,
)
except ImportError:
return _InternalStreamlitCallbackHandler(
parent_container,
max_thought_containers=max_thought_containers,
expand_new_thoughts=expand_new_thoughts,
collapse_completed_thoughts=collapse_completed_thoughts,
thought_labeler=thought_labeler,
)