langchain/libs/community/langchain_community/agent_toolkits/powerbi/toolkit.py
Bagatur ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00

109 lines
3.7 KiB
Python

"""Toolkit for interacting with a Power BI dataset."""
from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional, Union
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.prompts import PromptTemplate
from langchain_core.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_core.pydantic_v1 import Field
from langchain_community.agent_toolkits.base import BaseToolkit
from langchain_community.tools import BaseTool
from langchain_community.tools.powerbi.prompt import (
QUESTION_TO_QUERY_BASE,
SINGLE_QUESTION_TO_QUERY,
USER_INPUT,
)
from langchain_community.tools.powerbi.tool import (
InfoPowerBITool,
ListPowerBITool,
QueryPowerBITool,
)
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.chains.llm import LLMChain
class PowerBIToolkit(BaseToolkit):
"""Toolkit for interacting with Power BI dataset.
*Security Note*: This toolkit interacts with an external service.
Control access to who can use this toolkit.
Make sure that the capabilities given by this toolkit to the calling
code are appropriately scoped to the application.
See https://python.langchain.com/docs/security for more information.
"""
powerbi: PowerBIDataset = Field(exclude=True)
llm: Union[BaseLanguageModel, BaseChatModel] = Field(exclude=True)
examples: Optional[str] = None
max_iterations: int = 5
callback_manager: Optional[BaseCallbackManager] = None
output_token_limit: Optional[int] = None
tiktoken_model_name: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
def get_tools(self) -> List[BaseTool]:
"""Get the tools in the toolkit."""
return [
QueryPowerBITool(
llm_chain=self._get_chain(),
powerbi=self.powerbi,
examples=self.examples,
max_iterations=self.max_iterations,
output_token_limit=self.output_token_limit,
tiktoken_model_name=self.tiktoken_model_name,
),
InfoPowerBITool(powerbi=self.powerbi),
ListPowerBITool(powerbi=self.powerbi),
]
def _get_chain(self) -> LLMChain:
"""Construct the chain based on the callback manager and model type."""
from langchain.chains.llm import LLMChain
if isinstance(self.llm, BaseLanguageModel):
return LLMChain(
llm=self.llm,
callback_manager=self.callback_manager
if self.callback_manager
else None,
prompt=PromptTemplate(
template=SINGLE_QUESTION_TO_QUERY,
input_variables=["tool_input", "tables", "schemas", "examples"],
),
)
system_prompt = SystemMessagePromptTemplate(
prompt=PromptTemplate(
template=QUESTION_TO_QUERY_BASE,
input_variables=["tables", "schemas", "examples"],
)
)
human_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(
template=USER_INPUT,
input_variables=["tool_input"],
)
)
return LLMChain(
llm=self.llm,
callback_manager=self.callback_manager if self.callback_manager else None,
prompt=ChatPromptTemplate.from_messages([system_prompt, human_prompt]),
)