langchain/libs/community/tests/integration_tests/embeddings/test_xinference.py
Erick Friis 3a2eb6e12b
infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00

76 lines
2.2 KiB
Python

"""Test Xinference embeddings."""
import time
from typing import AsyncGenerator, Tuple
import pytest_asyncio
from langchain_community.embeddings import XinferenceEmbeddings
@pytest_asyncio.fixture
async def setup() -> AsyncGenerator[Tuple[str, str], None]:
import xoscar as xo
from xinference.deploy.supervisor import start_supervisor_components
from xinference.deploy.utils import create_worker_actor_pool
from xinference.deploy.worker import start_worker_components
pool = await create_worker_actor_pool(
f"test://127.0.0.1:{xo.utils.get_next_port()}"
)
print(f"Pool running on localhost:{pool.external_address}") # noqa: T201
endpoint = await start_supervisor_components(
pool.external_address, "127.0.0.1", xo.utils.get_next_port()
)
await start_worker_components(
address=pool.external_address, supervisor_address=pool.external_address
)
# wait for the api.
time.sleep(3)
async with pool:
yield endpoint, pool.external_address
def test_xinference_embedding_documents(setup: Tuple[str, str]) -> None:
"""Test xinference embeddings for documents."""
from xinference.client import RESTfulClient
endpoint, _ = setup
client = RESTfulClient(endpoint)
model_uid = client.launch_model(
model_name="vicuna-v1.3",
model_size_in_billions=7,
model_format="ggmlv3",
quantization="q4_0",
)
xinference = XinferenceEmbeddings(server_url=endpoint, model_uid=model_uid)
documents = ["foo bar", "bar foo"]
output = xinference.embed_documents(documents)
assert len(output) == 2
assert len(output[0]) == 4096
def test_xinference_embedding_query(setup: Tuple[str, str]) -> None:
"""Test xinference embeddings for query."""
from xinference.client import RESTfulClient
endpoint, _ = setup
client = RESTfulClient(endpoint)
model_uid = client.launch_model(
model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0"
)
xinference = XinferenceEmbeddings(server_url=endpoint, model_uid=model_uid)
document = "foo bar"
output = xinference.embed_query(document)
assert len(output) == 4096