mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
6e57306a13
# Changes This PR adds [Clarifai](https://www.clarifai.com/) integration to Langchain. Clarifai is an end-to-end AI Platform. Clarifai offers user the ability to use many types of LLM (OpenAI, cohere, ect and other open source models). As well, a clarifai app can be treated as a vector database to upload and retrieve data. The integrations includes: - Clarifai LLM integration: Clarifai supports many types of language model that users can utilize for their application - Clarifai VectorDB: A Clarifai application can hold data and embeddings. You can run semantic search with the embeddings #### Before submitting - [x] Added integration test for LLM - [x] Added integration test for VectorDB - [x] Added notebook for LLM - [x] Added notebook for VectorDB Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
87 lines
2.6 KiB
Python
87 lines
2.6 KiB
Python
"""Test Clarifai vectore store functionality."""
|
|
import time
|
|
|
|
from langchain.docstore.document import Document
|
|
from langchain.vectorstores import Clarifai
|
|
|
|
|
|
def test_clarifai_with_from_texts() -> None:
|
|
"""Test end to end construction and search."""
|
|
texts = ["foo", "bar", "baz"]
|
|
USER_ID = "minhajul"
|
|
APP_ID = "test-lang-2"
|
|
NUMBER_OF_DOCS = 1
|
|
docsearch = Clarifai.from_texts(
|
|
user_id=USER_ID,
|
|
app_id=APP_ID,
|
|
texts=texts,
|
|
pat=None,
|
|
number_of_docs=NUMBER_OF_DOCS,
|
|
)
|
|
time.sleep(2.5)
|
|
output = docsearch.similarity_search("foo")
|
|
assert output == [Document(page_content="foo")]
|
|
|
|
|
|
def test_clarifai_with_from_documents() -> None:
|
|
"""Test end to end construction and search."""
|
|
# Initial document content and id
|
|
initial_content = "foo"
|
|
|
|
# Create an instance of Document with initial content and metadata
|
|
original_doc = Document(page_content=initial_content, metadata={"page": "0"})
|
|
USER_ID = "minhajul"
|
|
APP_ID = "test-lang-2"
|
|
NUMBER_OF_DOCS = 1
|
|
docsearch = Clarifai.from_documents(
|
|
user_id=USER_ID,
|
|
app_id=APP_ID,
|
|
documents=[original_doc],
|
|
pat=None,
|
|
number_of_docs=NUMBER_OF_DOCS,
|
|
)
|
|
time.sleep(2.5)
|
|
output = docsearch.similarity_search("foo")
|
|
assert output == [Document(page_content=initial_content, metadata={"page": "0"})]
|
|
|
|
|
|
def test_clarifai_with_metadatas() -> None:
|
|
"""Test end to end construction and search with metadata."""
|
|
texts = ["oof", "rab", "zab"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
USER_ID = "minhajul"
|
|
APP_ID = "test-lang-2"
|
|
NUMBER_OF_DOCS = 1
|
|
docsearch = Clarifai.from_texts(
|
|
user_id=USER_ID,
|
|
app_id=APP_ID,
|
|
texts=texts,
|
|
pat=None,
|
|
number_of_docs=NUMBER_OF_DOCS,
|
|
metadatas=metadatas,
|
|
)
|
|
time.sleep(2.5)
|
|
output = docsearch.similarity_search("oof", k=1)
|
|
assert output == [Document(page_content="oof", metadata={"page": "0"})]
|
|
|
|
|
|
def test_clarifai_with_metadatas_with_scores() -> None:
|
|
"""Test end to end construction and scored search."""
|
|
texts = ["oof", "rab", "zab"]
|
|
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
|
USER_ID = "minhajul"
|
|
APP_ID = "test-lang-2"
|
|
NUMBER_OF_DOCS = 1
|
|
docsearch = Clarifai.from_texts(
|
|
user_id=USER_ID,
|
|
app_id=APP_ID,
|
|
texts=texts,
|
|
pat=None,
|
|
number_of_docs=NUMBER_OF_DOCS,
|
|
metadatas=metadatas,
|
|
)
|
|
time.sleep(2.5)
|
|
output = docsearch.similarity_search_with_score("oof", k=1)
|
|
assert output[0][0] == Document(page_content="oof", metadata={"page": "0"})
|
|
assert abs(output[0][1] - 1.0) < 0.001
|